Determination of mechanical, flowability, and microstructural properties of cemented tailings backfill containing rice straw

被引:55
|
作者
Chen, Xin [1 ,2 ,4 ]
Shi, Xiuzhi [1 ,5 ]
Zhou, Jian [1 ,6 ]
Yu, Zhi [1 ,6 ]
Huang, Peisheng [3 ]
机构
[1] CSU, Sch Resources & Safety Engn, Changsha 410083, Hunan, Peoples R China
[2] Ecole Polytech Montreal, Dept Civil Geol & Min Engn, RIME, CP 6079,Succursale Ctr Ville, Montreal, PQ H3C 3A7, Canada
[3] Fankou Lead Zinc Mine, Shaoguan 512325, Guangdong, Peoples R China
[4] Cent South Univ, Sch Resources & Safety Engn, Room 320,Bldg Min, Changsha 410083, Hunan, Peoples R China
[5] Cent South Univ, Sch Resources & Safety Engn, Room 315,Bldg Min, Changsha 410083, Hunan, Peoples R China
[6] Cent South Univ, Sch Resources & Safety Engn, Room 322,Bldg Min, Changsha 410083, Hunan, Peoples R China
基金
国家重点研发计划;
关键词
Rice straw; Cemented tailings backfill; Recycling; Unconfined compressive strength; Elastic modulus; Flowability; Microstructural properties; STRENGTH MATERIAL CLSM; PASTE BACKFILL; COMPRESSIVE BEHAVIOR; MATRIX COMPOSITES; WHEAT-STRAW; WASTE; CONCRETE; REINFORCEMENT;
D O I
10.1016/j.conbuildmat.2020.118520
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
China is the world's major producer of tailings and straw, and they lead to serious environmental and economic problems. This work was conducted to study sustainable rice straw (RS) and tailings utilization for cemented tailings backfill (CTB), and the effect of RS on the properties of CTB was evaluated. The RS fiber of the RS content (0.08, 0.16 and 0.24 wt%) and RS length (0.9, 2 and 4 cm) were used to prepare CTB. RS fibers show slight side effects of a decrease of 5% in the flowability of the fresh CTB slurry because the natural RS fibers with high water absorption cause viscous increases in the fresh CTB slurry. This decrease further decreases with increasing RS fiber content and length. The impact of the RS fibers on the unconfined compressive strength (UCS) and the elastic modulus of the CTB is significant. A UCS of more than 85% CTB and an elastic modulus of more than 74% CTB have been increased more than twice. The RS fiber reinforcement improves the ductility of the CTB and maintains the integrity of the CTB matrix when failure occurs. Scanning electron microscopy (SEM) observations analyses revealed that much hydration gel was generated in the RSCTB matrix, and these hydration gels became trapped on the surface of the RS fibers, which established a physical skeleton structure and enhanced the strength of the CTB. Additionally, the RSCTB method can reduce the backfill cost by 24.76% by reducing the consumption of cement, increasing the comprehensive utilization of the RS and tailings, and reducing the environmental pollution caused by industrial and agricultural waste. (C) 2020 Elsevier Ltd. All rights reserved.
引用
收藏
页数:13
相关论文
共 50 条
  • [31] Mechanical Properties and Microstructure Evolution of Cemented Tailings Backfill Under Seepage Pressure
    Ke, Yuxian
    Shen, Yang
    Qing, Chen
    Hu, Kaijian
    Wang, Shi
    Chen, Qiusong
    Guan, Huadong
    FRONTIERS IN MATERIALS, 2022, 8
  • [32] Mechanical properties of cemented tailings backfill under true triaxial loading condition
    Guanghua Sun
    Yufan Feng
    Xulong Yao
    Chenyang Liu
    Chundi Ma
    Yue Wang
    Arabian Journal of Geosciences, 2022, 15 (13)
  • [33] Mechanical properties and energy evolution of cemented tailings backfill at different curing temperatures
    Su, Hongyan
    Song, Pingxin
    He, Qiang
    Journal of Mining and Strata Control Engineering, 2023, 5 (02):
  • [34] Thermal, mechanical and ultrasonic properties of cemented tailings backfill subjected to microwave radiation
    Sun, Wei
    Wu, Di
    Liu, Huaibin
    Qu, Chunlai
    CONSTRUCTION AND BUILDING MATERIALS, 2021, 313
  • [35] Study on the Mechanical and Flow Properties of Polypropylene Fiber Reinforced Cemented Tailings Backfill
    Hou Y.
    Yin S.
    Zhao G.
    Zhang P.
    Yang S.
    Zhang M.
    Liu H.
    Cailiao Daobao/Materials Reports, 2021, 35 (19): : 19030 - 19035
  • [36] Compressive behavior and microstructural properties of tailings polypropylene fibre-reinforced cemented paste backfill
    Chen, Xin
    Shi, Xiuzhi
    Zhou, Jian
    Chen, Qiusong
    Li, Enming
    Du, Xianghong
    CONSTRUCTION AND BUILDING MATERIALS, 2018, 190 : 211 - 221
  • [37] Influence of water salinity on the properties of cemented tailings backfill
    Wang, C
    Villaescusa, E
    TRANSACTIONS OF THE INSTITUTION OF MINING AND METALLURGY SECTION A-MINING TECHNOLOGY, 2001, 110 : A62 - A65
  • [38] Effect of overflow tailings properties on cemented paste backfill
    Chen, Xin
    Shi, Xiuzhi
    Zhou, Jian
    Du, Xianghong
    Chen, Qiusong
    Qiu, Xianyang
    JOURNAL OF ENVIRONMENTAL MANAGEMENT, 2019, 235 : 133 - 144
  • [39] Mechanical property and microstructure of cemented tailings backfill containing fly ash activated by calcium formate
    Wang, Yiming
    Wu, Jiangyu
    Pu, Hai
    Yin, Qian
    Jing, Hongwen
    ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH, 2022, 29 (19) : 28572 - 28587
  • [40] Mechanical property and microstructure of cemented tailings backfill containing fly ash activated by calcium formate
    Yiming Wang
    Jiangyu Wu
    Hai Pu
    Qian Yin
    Hongwen Jing
    Environmental Science and Pollution Research, 2022, 29 : 28572 - 28587