VARIATIONAL INFERENCE FOR NONPARAMETRIC SUBSPACE DICTIONARY LEARNING WITH HIERARCHICAL BETA PROCESS

被引:0
|
作者
Li, Shaoyang [1 ]
Tao, Xiaoming [1 ]
Lu, Jianhua [1 ]
机构
[1] Tsinghua Univ, Dept Elect Engn, TNList, Beijing 100084, Peoples R China
来源
2017 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP) | 2017年
基金
中国国家自然科学基金;
关键词
Nonparametric Bayes; subspace dictionary learning; hierarchical Beta process; variational inference; image denoising;
D O I
暂无
中图分类号
O42 [声学];
学科分类号
070206 ; 082403 ;
摘要
Nonparametric Bayesian models have been implemented in dictionary learning. However, for signal samples from multiple subspaces, existing methods only learn one uniform dictionary and thus are not optimal for representing the subspace structures. To address this issue, we first utilize a combination of Dirichlet process and hierarchical Beta process as priors to infer the latent subspace number and dictionary dimension automatically; second, to derive tractable variational inference, we modify the priors with the Sethuraman's construction and further employ the multinomial approximation. Experimental results indicate that our approach can achieve a set of non-parametric subspace dictionaries, while showing performance enhancements in the tasks of image denoising.
引用
收藏
页码:2691 / 2695
页数:5
相关论文
共 50 条
  • [1] Nonparametric tensor dictionary learning with beta process priors
    Ju, Fujiao
    Sun, Yanfeng
    Gao, Junbin
    Hu, Yongli
    Yin, Baocai
    NEUROCOMPUTING, 2016, 218 : 120 - 130
  • [2] Hierarchical nonlinear subspace dictionary learning
    Zhou G.-H.
    Lu J.-W.
    Ni T.-G.
    Hu X.-L.
    Zhejiang Daxue Xuebao (Gongxue Ban)/Journal of Zhejiang University (Engineering Science), 2022, 56 (06): : 1159 - 1167
  • [3] Efficient EM-variational inference for nonparametric Hawkes process
    Feng Zhou
    Simon Luo
    Zhidong Li
    Xuhui Fan
    Yang Wang
    Arcot Sowmya
    Fang Chen
    Statistics and Computing, 2021, 31
  • [4] Efficient EM-variational inference for nonparametric Hawkes process
    Zhou, Feng
    Luo, Simon
    Li, Zhidong
    Fan, Xuhui
    Wang, Yang
    Sowmya, Arcot
    Chen, Fang
    STATISTICS AND COMPUTING, 2021, 31 (04)
  • [5] Reliable and Scalable Variational Inference for the Hierarchical Dirichlet Process
    Hughes, Michael C.
    Kim, Dae Il
    Sudderth, Erik B.
    ARTIFICIAL INTELLIGENCE AND STATISTICS, VOL 38, 2015, 38 : 370 - 378
  • [6] CATVI: Conditional and Adaptively Truncated Variational Inference for Hierarchical Bayesian Nonparametric Models
    Liu, Yirui
    Qiao, Xinghao
    Lam, Jessica
    INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE AND STATISTICS, VOL 151, 2022, 151
  • [7] Nonparametric Variational Auto-encoders for Hierarchical Representation Learning
    Goyal, Prasoon
    Hu, Zhiting
    Liang, Xiaodan
    Wang, Chenyu
    Xing, Eric P.
    2017 IEEE INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV), 2017, : 5104 - 5112
  • [8] A Variational Bayesian Dictionary Learning for Process Monitoring
    Zhang, Qi
    Xie, Lei
    Xu, Weihua
    Su, Hongye
    2023 IEEE 12TH DATA DRIVEN CONTROL AND LEARNING SYSTEMS CONFERENCE, DDCLS, 2023, : 11 - 15
  • [9] Early Stopping as Nonparametric Variational Inference
    Duvenaud, David
    Maclaurin, Dougal
    Adams, Ryan P.
    ARTIFICIAL INTELLIGENCE AND STATISTICS, VOL 51, 2016, 51 : 1070 - 1077
  • [10] NONPARAMETRIC IMAGE INTERPOLATION AND DICTIONARY LEARNING USING SPATIALLY-DEPENDENT DIRICHLET AND BETA PROCESS PRIORS
    Paisley, John
    Zhou, Mingyuan
    Sapiro, Guillermo
    Carin, Lawrence
    2010 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING, 2010, : 1869 - 1872