A novel density peaks clustering algorithm based on Hopkins statistic

被引:14
|
作者
Zhang, Ruilin [1 ]
Miao, Zhenguo [1 ]
Tian, Ye [1 ]
Wang, Hongpeng [1 ,2 ]
机构
[1] Harbin Inst Technol, Sch Comp Sci & Technol, Shenzhen, Peoples R China
[2] Peng Cheng Lab, Shenzhen, Peoples R China
关键词
Clustering; Cluster validity index (CVI); Cluster center; Hopkins statistic; Density peaks; FAST SEARCH; NUMBER; FIND;
D O I
10.1016/j.eswa.2022.116892
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Density peaks clustering (DPC) is a promising algorithm due to straightforward and easy implementation. However, most of its improvements still rely on expert, strong prior information, or complex iterations to identify the cluster centers, which inevitably adds subjectivity and instability. Moreover, some crisp and sensitive density metrics will sometimes reduce the representativeness of the center, resulting in poor clustering. To this end, we propose an enhanced algorithm, called Density peaks clustering based on Hopkins Statistic. The main property of the method is to realize the automatic identification of cluster centers without prior information. Specifically, with a two-stage strategy, we first specify some objects as candidate centers by linear regression and residual analysis. Subsequently, inspired by optimization idea we design a novel validity index (AHS) instead of the original decision graph to find the desired centers from the candidates. Another novel part of DPC-AHS is that the proposed adjusted-k-nearest neighbors (A-kNN) dynamically defines the neighbors during the process, which further enhances the robustness against outliers. Finally, we compare performance of DPC-AHS with 7 state-of-the-art methods over synthetic, UCI, and image datasets. Experiments on 25 datasets and in-depth discussion cases from 5 perspectives demonstrate that our algorithm is feasible and effective in clustering and center identification.
引用
收藏
页数:18
相关论文
共 50 条
  • [41] GDPC: generalized density peaks clustering algorithm based on order similarity
    Xiaofei Yang
    Zhiling Cai
    Ruijia Li
    William Zhu
    International Journal of Machine Learning and Cybernetics, 2021, 12 : 719 - 731
  • [42] Density peaks clustering algorithm based on improved similarity and allocation strategy
    Shifei Ding
    Wei Du
    Chao Li
    Xiao Xu
    Lijuan Wang
    Ling Ding
    International Journal of Machine Learning and Cybernetics, 2023, 14 : 1527 - 1542
  • [43] A Novel Density Peaks Clustering Algorithm with Isolation Kernel and K-Induction
    Zhang, Shichen
    Li, Kai
    APPLIED SCIENCES-BASEL, 2023, 13 (01):
  • [44] A Fast Density Peaks Clustering Algorithm Based on Pre-screening
    Xu, Xiao
    Ding, Shifei
    Sun, Tongfeng
    2018 IEEE INTERNATIONAL CONFERENCE ON BIG DATA AND SMART COMPUTING (BIGCOMP), 2018, : 513 - 516
  • [45] An improved density peaks clustering algorithm based on the generalized neighbors similarity
    Yang, Xuan
    Xiao, Fuyuan
    ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2024, 136
  • [46] A trainable clustering algorithm based on shortest paths from density peaks
    Pizzagalli, Diego Ulisse
    Gonzalez, Santiago F.
    Krause, Rolf
    SCIENCE ADVANCES, 2019, 5 (10)
  • [47] Density peaks clustering algorithm based on kernel density estimation and minimum spanning tree
    Fan T.
    Li X.
    Hou J.
    Liu B.
    Kang P.
    International Journal of Innovative Computing and Applications, 2022, 13 (5-6) : 336 - 350
  • [48] Clustering ensemble based on density peaks
    Chu R.-H.
    Wang H.-J.
    Yang Y.
    Li T.-R.
    Wang, Hong-Jun (wanghongjun@swjtu.edu.cn), 1600, Science Press (42): : 1401 - 1412
  • [49] A Novel Oversampling Method for Imbalanced Datasets Based on Density Peaks Clustering
    Cao, Jie
    Shi, Yong
    TEHNICKI VJESNIK-TECHNICAL GAZETTE, 2021, 28 (06): : 1813 - 1819
  • [50] An Algorithm of Clustering by Density Peaks Using in Anomaly Detection
    Yin, Chunyong
    Zhang, Sun
    Yin, Zhichao
    Wang, Jin
    INTERNATIONAL JOURNAL OF SECURITY AND ITS APPLICATIONS, 2015, 9 (12): : 115 - 127