Goodness-of-Fit of Conditional Regression Models for Multiple Imputation

被引:2
|
作者
Cabras, Stefano [1 ]
Eugenia Castellanos, Maria [1 ]
Quiros, Alicia [1 ]
机构
[1] Univ Cagliari, Dipartimento Matemat & Informat, I-09124 Cagliari, Italy
来源
BAYESIAN ANALYSIS | 2011年 / 6卷 / 03期
关键词
Calibrated posterior predictive p-value; Discrepancy measure; Minimum training sample; Missing at random; Predictive distribution; Sequential regression multiple imputation; P-VALUES; CHECKING;
D O I
10.1214/ba/1339616471
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We propose the calibrated posterior predictive p-value (cppp) as an interpretable goodness-of-fit (GOP) measure for regression models in sequential regression multiple imputation (SRMI). The cppp is uniformly distributed under the assumed model, while the posterior predictive p-value (ppp) is not in general and in particular when the percentage of missing data, pm, increases. Uniformity of cppp allows the analyst to evaluate properly the evidence against the assumed model. We show the advantages of cppp over ppp in terms of power in detecting common departures from the assumed model and, more importantly, in terms of robustness with respect to pm. In the imputation phase, which provides a complete database for general statistical analyses, default and improper priors are usually needed, whereas the cppp requires a proper prior on regression parameters. We avoid this problem by introducing the use of a minimum training sample that turns the improper prior into a proper distribution. The dependency on the training sample is naturally accounted for by changing the training sample at each step of the SRMI. Our results come from theoretical considerations together with simulation studies and an application to a real data set of anthropometric measures.
引用
收藏
页码:429 / 456
页数:28
相关论文
共 50 条
  • [1] An omnibus test of goodness-of-fit for conditional distributions with applications to regression models
    Ducharme, Gilles R.
    Ferrigno, Sandie
    [J]. JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2012, 142 (10) : 2748 - 2761
  • [2] Goodness-of-fit tests in conditional duration models
    Meintanis, Simos G.
    Milosevic, Bojana
    Obradovic, Marko
    [J]. STATISTICAL PAPERS, 2020, 61 (01) : 123 - 140
  • [3] Goodness-of-fit tests in conditional duration models
    Simos G. Meintanis
    Bojana Milošević
    Marko Obradović
    [J]. Statistical Papers, 2020, 61 : 123 - 140
  • [4] GOODNESS-OF-FIT DIAGNOSTICS FOR REGRESSION-MODELS
    MULLER, HG
    [J]. SCANDINAVIAN JOURNAL OF STATISTICS, 1992, 19 (02) : 157 - 172
  • [5] On goodness-of-fit measures for Poisson regression models
    Kurosawa, Takeshi
    Hui, Francis K. C.
    Welsh, A. H.
    Shinmura, Kousuke
    Eshima, Nobuoki
    [J]. AUSTRALIAN & NEW ZEALAND JOURNAL OF STATISTICS, 2020, 62 (03) : 340 - 366
  • [6] Goodness-of-fit tests for parametric regression models
    Fan, JQ
    Huang, LS
    [J]. JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2001, 96 (454) : 640 - 652
  • [7] Goodness-of-fit tests for ordinal response regression models
    Pulkstenis, E
    Robinson, TJ
    [J]. STATISTICS IN MEDICINE, 2004, 23 (06) : 999 - 1014
  • [8] Goodness-of-fit tests for nonlinear heteroscedastic regression models
    Diebolt, J
    Zuber, J
    [J]. STATISTICS & PROBABILITY LETTERS, 1999, 42 (01) : 53 - 60
  • [9] On testing the goodness-of-fit of nonlinear heteroscedastic regression models
    Diebolt, J
    Zuber, J
    [J]. COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 2001, 30 (01) : 195 - 216
  • [10] Goodness-of-fit tests for parametric models in censored regression
    Pardo-Fernandez, Juan Carlos
    Van Keilegom, Ingrid
    Gonzalez-Manteiga, Wenceslao
    [J]. CANADIAN JOURNAL OF STATISTICS-REVUE CANADIENNE DE STATISTIQUE, 2007, 35 (02): : 249 - 264