A study of variable subaperture size for astronomical adaptive optics

被引:0
|
作者
Voelz, DG [1 ]
Giles, MK [1 ]
Rha, J [1 ]
机构
[1] New Mexico State Univ, Klipsch Sch Elect & Comp Engn, Las Cruces, NM 88003 USA
关键词
astronomical adaptive optics; reconfigurable wavefront sensor; subaperture; Strehl ratio; Shack-Hartmann;
D O I
10.1117/12.512008
中图分类号
P4 [大气科学(气象学)];
学科分类号
0706 ; 070601 ;
摘要
We examine the utility of a wavefront sensor with a variable subaperture size for astronomical adaptive optics. A numerical analysis, based on wavefront variance and Strehl ratio expressions, was used to find the optimal subaperture size and wavefront sensor integration time for several case studies. The results show that a relatively smaller subaperture size can provide improved performance if the atmospheric coherence length r(0) is also small and the source is relatively bright. Similarly, a larger subaperture size can improve performance if r(0) is also large, the source is relatively dim, and the atmospheric temporal variation is relatively slow. These results suggest that a reconfigurable wavefront sensor could have utility for certain situations where conditions vary from nominal values.
引用
收藏
页码:198 / 204
页数:7
相关论文
共 50 条
  • [41] LAOS -: a numerical simulation tool for astronomical adaptive optics (and beyond)
    Carbillet, M
    Vérinaud, C
    Guarracino, M
    Fini, L
    Lardière, O
    Le Roux, B
    Puglisi, A
    Femenía, B
    Riccardi, A
    Anconelli, B
    Correia, S
    Bertero, M
    Boccacci, P
    ADVANCEMENTS IN ADAPTIVE OPTICS, PTS 1-3, 2004, 5490 : 637 - 648
  • [42] On application of constrained receding horizon control in astronomical adaptive optics
    Konnik, Mikhail V.
    De Dona, Jose
    Welsh, James Stuart
    ADAPTIVE OPTICS SYSTEMS III, 2012, 8447
  • [43] A real-time simulation facility for astronomical adaptive optics
    Basden, Alastair
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2014, 439 (03) : 2854 - 2862
  • [44] Adaptive optics: correcting atmospheric turbulence effects on astronomical images
    Rousset, Gerard
    Fuscob, Thierry
    COMPTES RENDUS PHYSIQUE, 2022, 23 : 293 - 344
  • [45] HIGH-SPEED HARTMANN TEST FOR ASTRONOMICAL ADAPTIVE OPTICS
    BALAKHOVSKAIA, TI
    BORISENKO, VI
    VITRICHENKO, EA
    MASLENNIKOV, KL
    PROKHOROV, AM
    SAGDEEV, RZ
    TRUSCHIN, EV
    CHESALIN, LS
    DOKLADY AKADEMII NAUK SSSR, 1984, 274 (05): : 1057 - 1060
  • [46] Observing techniques for astronomical laser guide star adaptive optics
    Max, CE
    Macintosh, B
    Olivier, SS
    Gavel, DT
    Friedman, HW
    ADAPTIVE OPTICAL SYSTEM TECHNOLOGIES, PARTS 1 AND 2, 1998, 3353 : 277 - 281
  • [47] OPTIMIZATION OF MCP INTENSIFIER TUBES IN ASTRONOMICAL ADAPTIVE OPTICS SENSORS
    CLAMPIN, M
    ACTIVE TELESCOPE SYSTEMS, 1989, 1114 : 152 - 159
  • [48] Application of geometric phase to wavefront sensing for astronomical adaptive optics
    Bloemhof, E. E.
    COMPLEX LIGHT AND OPTICAL FORCES VIII, 2014, 8999
  • [49] Astronomical imaging using ground-layer adaptive optics
    Baranec, Christoph
    Lloyd-Hart, Michael
    Milton, N. Mark
    Stalcup, Thomas
    Snyder, Miguel
    Vaitheeswaran, Vidhya
    McCarthy, Don
    Angel, Roger
    ASTRONOMICAL ADAPTATIVE OPTICS SYSTEMS AND APPLICATIONS III, 2007, 6691
  • [50] Characterizing the potential of MEMS deformable mirrors for astronomical adaptive optics
    Morzinski, Katie M.
    Evans, Julia W.
    Severson, Scott
    Macintosh, Bruce
    Dillon, Daren
    Gavel, Don
    Max, Claire
    Palmer, Dave
    ADVANCES IN ADAPTIVE OPTICS II, PRS 1-3, 2006, 6272 : U696 - U707