Prediction of breast cancer proteins involved in immunotherapy, metastasis, and RNA-binding using molecular descriptors and artificial neural networks

被引:35
|
作者
Lopez-Cortes, Andres [1 ,2 ,3 ]
Cabrera-Andrade, Alejandro [2 ,4 ,5 ]
Vazquez-Naya, Jose M. [2 ,6 ,7 ]
Pazos, Alejandro [2 ,6 ,7 ]
Gonzales-Diaz, Humberto [8 ,9 ]
Paz-y-Mino, Cesar [1 ]
Guerrero, Santiago [1 ]
Perez-Castillo, Yunierkis [4 ,10 ]
Tejera, Eduardo [4 ,11 ]
Munteanu, Cristian R. [2 ,6 ,7 ]
机构
[1] Univ UTE, Ctr Invest Genet & Genom, Fac Ciencias Salud Eugenio Espejo, Quito 170129, Ecuador
[2] Univ A Coruna, Comp Sci Fac, RNASA IMEDIR, Coruna 15071, Spain
[3] Red Latinoamer Implementac & Validac Gufas Clin F, Quito, Ecuador
[4] Univ Las Amer, Grp Bioquimioinformat, Ave Granados, Quito 170125, Ecuador
[5] Univ Las Amer, Fac Ciencias Salud, Carrera Enfermeria, Ave Granados, Quito 170125, Ecuador
[6] Ctr Invest Tecnol Informac & Comunicac CITIC, Campus Elvina S-N, La Coruna 15071, Spain
[7] Univ Hosp Complex A Coruna CHUAC, Biomed Res Inst A Coruna INIBIC, La Coruna 15006, Spain
[8] Univ Basque Country, Dept Organ Chem 2, UPV EHU, Leioa 48940, Biscay, Spain
[9] Basque Fdn Sci, Ikerbasque, Bilbao 48011, Biscay, Spain
[10] Univ Las Amer, Escuela Ciencias Fis & Matemat, Ave Granados, Quito 170125, Ecuador
[11] Univ Las Amer, Fac Ingn & Ciencias Agr, Ave Granados, Quito 170125, Ecuador
关键词
CLASSIFICATION; GENES; IDENTIFICATION; BIOMARKERS; NUMBER; MODEL;
D O I
10.1038/s41598-020-65584-y
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Breast cancer (BC) is a heterogeneous disease where genomic alterations, protein expression deregulation, signaling pathway alterations, hormone disruption, ethnicity and environmental determinants are involved. Due to the complexity of BC, the prediction of proteins involved in this disease is a trending topic in drug design. This work is proposing accurate prediction classifier for BC proteins using six sets of protein sequence descriptors and 13 machine-learning methods. After using a univariate feature selection for the mix of five descriptor families, the best classifier was obtained using multilayer perceptron method (artificial neural network) and 300 features. The performance of the model is demonstrated by the area under the receiver operating characteristics (AUROC) of 0.980 +/- 0.0037, and accuracy of 0.936 +/- 0.0056 (3-fold cross-validation). Regarding the prediction of 4,504 cancer-associated proteins using this model, the best ranked cancer immunotherapy proteins related to BC were RPS27, SUPT4H1, CLPSL2, POLR2K, RPL38, AKT3, CDK3, RPS20, RASL11A and UBTD1; the best ranked metastasis driver proteins related to BC were S100A9, DDA1, TXN, PRNP, RPS27, S100A14, S100A7, MAPK1, AGR3 and NDUFA13; and the best ranked RNA-binding proteins related to BC were S100A9, TXN, RPS27L, RPS27, RPS27A, RPL38, MRPL54, PPAN, RPS20 and CSRP1. This powerful model predicts several BC-related proteins that should be deeply studied to find new biomarkers and better therapeutic targets. Scripts can be downloaded at https://github.com/muntisa/neural-networks-for-breast-cancer-proteins.
引用
收藏
页数:13
相关论文
共 50 条
  • [31] Plakophilin-associated RNA-binding proteins in prostate cancer and their implications in tumor progression and metastasis
    Yang, Cheng
    Stroebel, Philipp
    Marx, Alexander
    Hofmann, Ilse
    VIRCHOWS ARCHIV, 2013, 463 (03) : 379 - 390
  • [32] Development and validation of novel prognostic models based on RNA-binding proteins in breast cancer
    Fan, Wei
    Ding, Jun
    Liu, Shushu
    Zhong, Wei
    JOURNAL OF INTERNATIONAL MEDICAL RESEARCH, 2022, 50 (06)
  • [33] The role of RNA-binding protein HuR in lung metastasis of triple-negative breast cancer
    Techasintana, Patsharaporn
    Gubin, Matthew Michael
    Magee, Joseph David
    Dahm, Garrett MacKenzie
    Atasoy, Ulus
    CANCER RESEARCH, 2011, 71
  • [34] Prediction of RNA-binding residues in proteins using the interaction propensities of amino acids and nucleotides
    Shrestha, Rojan
    Kim, Jisu
    Han, Kyungsook
    ADVANCED INTELLIGENT COMPUTING THEORIES AND APPLICATIONS, PROCEEDINGS: WITH ASPECTS OF THEORETICAL AND METHODOLOGICAL ISSUES, 2008, 5226 : 114 - +
  • [35] PredRBR: Accurate Prediction of RNA-binding Residues in Proteins Using Gradient Tree Boosting
    Liu, Diwei
    Tang, Yongjun
    Fan, Chao
    Chen, Zhigang
    Deng, Lei
    2016 IEEE INTERNATIONAL CONFERENCE ON BIOINFORMATICS AND BIOMEDICINE (BIBM), 2016, : 47 - 52
  • [36] Dynamic model for the prediction generation using artificial neural networks (RNA)
    Vera, Miguel
    Bustamante, Juan
    VISION GERENCIAL, 2007, 6 : 130 - 142
  • [37] Glass transition temperature of ionic liquids using molecular descriptors and artificial neural networks
    Valderrama, Jose O.
    Campusano, Richard A.
    Rojas, Roberto E.
    COMPTES RENDUS CHIMIE, 2017, 20 (05) : 573 - 584
  • [38] Improvement of breast cancer relapse prediction in high risk intervals using artificial neural networks
    Jerez, JM
    Franco, L
    Alba, E
    Llombart-Cussac, A
    Lluch, A
    Ribelles, N
    Munárriz, B
    Martín, M
    BREAST CANCER RESEARCH AND TREATMENT, 2005, 94 (03) : 265 - 272
  • [39] Improvement of breast cancer relapse prediction in high risk intervals using artificial neural networks
    J.M. Jerez
    L. Franco
    E. Alba
    A. Llombart-Cussac
    A. Lluch
    N. Ribelles
    B. Munárriz
    M. Martín
    Breast Cancer Research and Treatment, 2005, 94 : 265 - 272
  • [40] Breast Cancer Survival Prediction using Artificial Neural Network
    Venkatesan, P.
    Suresh, M. L.
    INTERNATIONAL JOURNAL OF COMPUTER SCIENCE AND NETWORK SECURITY, 2009, 9 (05): : 169 - 174