Prediction of breast cancer proteins involved in immunotherapy, metastasis, and RNA-binding using molecular descriptors and artificial neural networks

被引:35
|
作者
Lopez-Cortes, Andres [1 ,2 ,3 ]
Cabrera-Andrade, Alejandro [2 ,4 ,5 ]
Vazquez-Naya, Jose M. [2 ,6 ,7 ]
Pazos, Alejandro [2 ,6 ,7 ]
Gonzales-Diaz, Humberto [8 ,9 ]
Paz-y-Mino, Cesar [1 ]
Guerrero, Santiago [1 ]
Perez-Castillo, Yunierkis [4 ,10 ]
Tejera, Eduardo [4 ,11 ]
Munteanu, Cristian R. [2 ,6 ,7 ]
机构
[1] Univ UTE, Ctr Invest Genet & Genom, Fac Ciencias Salud Eugenio Espejo, Quito 170129, Ecuador
[2] Univ A Coruna, Comp Sci Fac, RNASA IMEDIR, Coruna 15071, Spain
[3] Red Latinoamer Implementac & Validac Gufas Clin F, Quito, Ecuador
[4] Univ Las Amer, Grp Bioquimioinformat, Ave Granados, Quito 170125, Ecuador
[5] Univ Las Amer, Fac Ciencias Salud, Carrera Enfermeria, Ave Granados, Quito 170125, Ecuador
[6] Ctr Invest Tecnol Informac & Comunicac CITIC, Campus Elvina S-N, La Coruna 15071, Spain
[7] Univ Hosp Complex A Coruna CHUAC, Biomed Res Inst A Coruna INIBIC, La Coruna 15006, Spain
[8] Univ Basque Country, Dept Organ Chem 2, UPV EHU, Leioa 48940, Biscay, Spain
[9] Basque Fdn Sci, Ikerbasque, Bilbao 48011, Biscay, Spain
[10] Univ Las Amer, Escuela Ciencias Fis & Matemat, Ave Granados, Quito 170125, Ecuador
[11] Univ Las Amer, Fac Ingn & Ciencias Agr, Ave Granados, Quito 170125, Ecuador
关键词
CLASSIFICATION; GENES; IDENTIFICATION; BIOMARKERS; NUMBER; MODEL;
D O I
10.1038/s41598-020-65584-y
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Breast cancer (BC) is a heterogeneous disease where genomic alterations, protein expression deregulation, signaling pathway alterations, hormone disruption, ethnicity and environmental determinants are involved. Due to the complexity of BC, the prediction of proteins involved in this disease is a trending topic in drug design. This work is proposing accurate prediction classifier for BC proteins using six sets of protein sequence descriptors and 13 machine-learning methods. After using a univariate feature selection for the mix of five descriptor families, the best classifier was obtained using multilayer perceptron method (artificial neural network) and 300 features. The performance of the model is demonstrated by the area under the receiver operating characteristics (AUROC) of 0.980 +/- 0.0037, and accuracy of 0.936 +/- 0.0056 (3-fold cross-validation). Regarding the prediction of 4,504 cancer-associated proteins using this model, the best ranked cancer immunotherapy proteins related to BC were RPS27, SUPT4H1, CLPSL2, POLR2K, RPL38, AKT3, CDK3, RPS20, RASL11A and UBTD1; the best ranked metastasis driver proteins related to BC were S100A9, DDA1, TXN, PRNP, RPS27, S100A14, S100A7, MAPK1, AGR3 and NDUFA13; and the best ranked RNA-binding proteins related to BC were S100A9, TXN, RPS27L, RPS27, RPS27A, RPL38, MRPL54, PPAN, RPS20 and CSRP1. This powerful model predicts several BC-related proteins that should be deeply studied to find new biomarkers and better therapeutic targets. Scripts can be downloaded at https://github.com/muntisa/neural-networks-for-breast-cancer-proteins.
引用
收藏
页数:13
相关论文
共 50 条
  • [1] Prediction of breast cancer proteins involved in immunotherapy, metastasis, and RNA-binding using molecular descriptors and artificial neural networks
    Andrés López-Cortés
    Alejandro Cabrera-Andrade
    José M. Vázquez-Naya
    Alejandro Pazos
    Humberto Gonzáles-Díaz
    César Paz-y-Miño
    Santiago Guerrero
    Yunierkis Pérez-Castillo
    Eduardo Tejera
    Cristian R. Munteanu
    Scientific Reports, 10
  • [2] RNA-binding proteins and cancer metastasis
    Wang, Shengjie
    Sun, Zelong
    Lei, Zhe
    Zhang, Hong-Tao
    SEMINARS IN CANCER BIOLOGY, 2022, 86 : 748 - 768
  • [3] Prediction of Breast Cancer Using Artificial Neural Networks
    Ismail Saritas
    Journal of Medical Systems, 2012, 36 : 2901 - 2907
  • [4] Prediction of Breast Cancer Using Artificial Neural Networks
    Saritas, Ismail
    JOURNAL OF MEDICAL SYSTEMS, 2012, 36 (05) : 2901 - 2907
  • [5] Research progress on RNA-binding proteins in breast cancer
    Zhang, Wenzhu
    Liu, Linlin
    Zhao, Shengdi
    Chen, Liang
    Wei, Yuxian
    Chen, Wenlin
    Ge, Fei
    ONCOLOGY LETTERS, 2022, 23 (04)
  • [6] Research progress on RNA-binding proteins in breast cancer
    Chen, Ying
    Qin, Hai
    Zheng, Lufeng
    FRONTIERS IN ONCOLOGY, 2022, 12
  • [7] Identification of RNA-Binding Proteins with Prognostic Prediction in Colorectal Cancer
    Bai, Xiao-fen
    Liu, Jing-wen
    BIOMED RESEARCH INTERNATIONAL, 2021, 2021
  • [8] Integrative analysis of significant RNA-binding proteins in colorectal cancer metastasis
    Zhou, Bin
    Guo, Rui
    JOURNAL OF CELLULAR BIOCHEMISTRY, 2018, 119 (12) : 9730 - 9741
  • [9] RNA-binding proteins as molecular links between cancer and neurodegeneration
    Danae Campos-Melo
    Cristian A. Droppelmann
    Kathryn Volkening
    Michael J. Strong
    Biogerontology, 2014, 15 : 587 - 610
  • [10] RNA-binding proteins as molecular links between cancer and neurodegeneration
    Campos-Melo, Danae
    Droppelmann, Cristian A.
    Volkening, Kathryn
    Strong, Michael J.
    BIOGERONTOLOGY, 2014, 15 (06) : 587 - 610