Thin-sheet flow between coalescing bubbles

被引:24
|
作者
Munro, James P. [1 ]
Anthony, Christopher R. [2 ]
Basaran, Osman A. [2 ]
Lister, John R. [1 ]
机构
[1] CMS, Dept Appl Math & Theoret Phys, Inst Theoret Geophys, Cambridge CB3 0WA, England
[2] Purdue Univ, Sch Chem Engn, W Lafayette, IN 47907 USA
基金
英国工程与自然科学研究理事会;
关键词
breakup/coalescence; capillary flows; drops and bubbles; SURFACE-TENSION; DYNAMICS; DROPS; FLUID; FILMS; WEDGE;
D O I
10.1017/jfm.2015.253
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
When two spherical bubbles touch, a hole is formed in the fluid sheet between them, and capillary pressure acting on its tightly curved edge drives an outward radial flow which widens the hole joining the bubbles. Recent images of the early stages of this process (Paulsen et al., Nat. Common., vol. 5, 2014) show that the radius of the hole r(E), at time t grows proportional to t(1/2), and that the rate is dependent on the fluid viscosity. Here, we explain this behaviour in terms of similarity solutions to a third-order system of radial extensional flow equations for the thickness and velocity of the sheet of fluid between the bubbles, and determine the growth rate as a function of the Ohnesorge number Oh. The initially quadratic sheet profile allows the ratio of viscous and inertial effects to be independent of time We show that the sheet is slender for r(E) << a if Oh >> 1, where a is the bubble radius, but only slender for r(E) << Oh(2)a if Oh << 1 due to a compressional boundary layer of length L proportional to Oh r(E), after which there is a change in the structure but not the speed of the retracting sheet. For Oh << 1, the detailed analysis justifies a simple momentum-balance argument, which gives the analytic prediction r(E) similar to (32a gamma/3 rho)(1/4)t(1/2) where gamma is the surface tension and rho is the density.
引用
收藏
页数:12
相关论文
共 50 条
  • [31] Dynamic Tensile Characterization of Thin-Sheet Brittle Metallic Materials
    Sanborn, B.
    Hudspeth, M.
    Song, B.
    EXPERIMENTAL TECHNIQUES, 2020, 44 (05) : 639 - 648
  • [32] Simulation of thin-sheet metal blanking and punching by elastic mediums
    Semenov, I. E.
    Povorov, S. V.
    INTERNATIONAL WORKSHOP ADVANCED TECHNOLOGIES IN MATERIAL SCIENCE, MECHANICAL AND AUTOMATION ENGINEERING - MIP: ENGINEERING - 2019, 2019, 537
  • [33] The Power Consumption Optimization for Thin-Sheet Rolling on a Reversing Mill
    Perunov G.P.
    Inatovich Y.V.
    Strashkova N.A.
    Steel in Translation, 2020, 50 (12) : 897 - 901
  • [34] Study of a constrained bending process in profiling thin-sheet blanks
    Kolganov, I.M.
    Kuprin, P.N.
    Pakshin, P.Yu.
    Izvestiya Vysshikh Uchebnykh Zavedenij. Aviatsionnaya Tekhnika, 2005, (03): : 55 - 58
  • [35] WELDING CIRCUMFERENTIAL SEAMS OF THIN-SHEET SHELLS IN OVERHEAD POSITION
    STOLPNER, EA
    WELDING PRODUCTION, 1976, 23 (06): : 43 - 44
  • [36] Polydisperse dry compositions for slip enameling of thin-sheet steel
    Bragina, L. L.
    Pokroeva, Ya A.
    GLASS AND CERAMICS, 2012, 68 (11-12) : 410 - 412
  • [37] Thin-sheet modelling of lithospheric deformation and surface mass transport
    Jiménez-Munt, I
    Garcia-Castellanos, D
    Fernandez, M
    TECTONOPHYSICS, 2005, 407 (3-4) : 239 - 255
  • [38] WELDING OF THIN-SHEET DISSIMILAR MATERIALS (COPPER-CONSTANTAN)
    KULIKOV, FR
    MISHENKO.TA
    WELDING PRODUCTION, 1969, 16 (08): : 87 - &
  • [39] Dynamic Tensile Characterization of Thin-Sheet Brittle Metallic Materials
    B. Sanborn
    M. Hudspeth
    B. Song
    Experimental Techniques, 2020, 44 : 639 - 648
  • [40] PENETRATION OF HYPERVELOCITY PROJECTILES INTO ALUMINUM AND POLYETHYLENE THIN-SHEET STACKS
    NAKAMURA, A
    YAGUCHI, K
    FUJIWARA, A
    KADONO, T
    SUGUIYAMA, K
    JAPANESE JOURNAL OF APPLIED PHYSICS PART 1-REGULAR PAPERS SHORT NOTES & REVIEW PAPERS, 1991, 30 (9A): : 2129 - 2133