Mathematical Model of Cavitation and Modelling of Fluid Flow in Cone

被引:24
|
作者
Kozubkova, Milada [1 ]
Rautova, Jana [1 ]
Bojko, Marian [1 ]
机构
[1] Tr 17 Listopadu 15-2172, Ostrava 70833, Czech Republic
关键词
Mathematical model; cavitation;
D O I
10.1016/j.proeng.2012.07.002
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Based on cavitation modelling in Laval nozzle results and experience, following problem was defined. Flowing of water on turbine blade wheel outlet is the main point of the problem. Nowadays there is a chance to model the cavitation in Fluent system, where solution of two-phase mixtures (water-liquid and water-vapour) and more accurate three-phase mixtures (water-liquid, water-vapour and non-condensable air) are presented. It is possible to use "Full cavitation model" or "Schnerr and Sauer model" (simpler model) or "Zwart-Gerber-Belamri" for modelling this phenomenon. All the models take under account dynamics of vapour bubbles. All the models are compared in this article. (C) 2011 Published by Elsevier Ltd. Selection and/or peer-review under responsibility of Sumy State University
引用
收藏
页码:9 / 18
页数:10
相关论文
共 50 条
  • [31] Mathematical model for transient fluid flow in a continuous casting mold
    Takatani, K
    Tanizawa, Y
    Mizukami, H
    Nishimura, K
    ISIJ INTERNATIONAL, 2001, 41 (10) : 1252 - 1261
  • [32] A MATHEMATICAL-MODEL FOR THE ANALYSIS OF FLUID-FLOW IN A SCROLL
    CHEN, SR
    LEE, SS
    HUANG, YM
    JOURNAL OF FLUIDS ENGINEERING-TRANSACTIONS OF THE ASME, 1986, 108 (01): : 6 - 11
  • [33] Mathematical Model of Fluid Flow Between Rotating Nonplane Disks
    Medvedev A.E.
    Prikhod’ko Y.M.
    Fomin V.M.
    Fomichev V.P.
    Chekhov V.P.
    Chernyavskii A.M.
    Fomichev A.V.
    Ruzmatov T.M.
    Karas’kov A.M.
    Medvedev, A.E. (Medvedev@itam.nsc.ru), 2017, Springer Science and Business Media, LLC (90) : 1479 - 1487
  • [34] A mathematical model for tumor cords incorporating the flow of interstitial fluid
    Bertuzzi, A
    Fasano, A
    Gandolfi, A
    MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 2005, 15 (11): : 1735 - 1777
  • [35] A MATHEMATICAL-MODEL OF FLUID-FLOW PHENOMENA IN TUNDISHES
    ELKADDAH, N
    SZEKELY, J
    JOURNAL OF METALS, 1984, 36 (12): : 15 - 15
  • [36] Mathematical model for flow and mass transfer in electromembrane cells with macrovortical fluid flow
    Shapovalov, SV
    Tyurin, VI
    RUSSIAN JOURNAL OF ELECTROCHEMISTRY, 1996, 32 (02) : 214 - 219
  • [37] On the Mathematical Modelling of a Compressible Viscoelastic Fluid
    Bollada, P. C.
    Phillips, T. N.
    ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2012, 205 (01) : 1 - 26
  • [38] Mathematical modelling of arterial fluid dynamics
    Timothy J. Pedley
    Journal of Engineering Mathematics, 2003, 47 : 419 - 444
  • [39] MATHEMATICAL MODELLING IN FLUID MECHANICS.
    Landahl, Marten T.
    Zeitschrift fur angewandte Mathematik und Mechanik, 1981, 61 (04): : 9 - 14
  • [40] On the Mathematical Modelling of a Compressible Viscoelastic Fluid
    P. C. Bollada
    T. N. Phillips
    Archive for Rational Mechanics and Analysis, 2012, 205 : 1 - 26