Fabrication of corrugated probes for scanning near-field optical microscopy

被引:0
|
作者
Wrobel, Piotr [1 ]
Stefaniuk, Tomasz [1 ]
Antosiewicz, Tomasz J. [2 ,3 ]
Libura, Adam [4 ]
Nowak, Grzegorz [4 ]
Wejrzanowski, Tomasz [5 ]
Slesinski, Robert [5 ]
Jedrzejewski, Kazimierz [6 ]
Szoplik, Tomasz [1 ]
机构
[1] Univ Warsaw, Fac Phys, Pasteura 7, PL-02093 Warsaw, Poland
[2] Univ Warsaw, Interdisciplinary Ctr Math & Computat Modelling, PL-02106 Warsaw, Poland
[3] Chalmers, Dept Appl Phys, SE-41296 Gothenburg, Sweden
[4] Polish Acad Sci, Inst High Pressure Phys, PL-01142 Warsaw, Poland
[5] Warsaw Univ Technol, Fac Mat Sci & Engn, PL-02507 Warsaw, Poland
[6] Warsaw Univ Technol, Fac Elect & Informat Technol, PL-00665 Warsaw, Poland
来源
METAMATERIALS VI | 2011年 / 8070卷
关键词
Scanning near-field optical microscopy; SNOM probes; aperture metal-coated probes; corregated SNOM probes; Bragg grating; etching; Turner method; FIBER PROBE; TIP; PHOTOSENSITIVITY; SPECTROSCOPY; POLARITONS; THROUGHPUT; EXCITATION;
D O I
10.1117/12.886844
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
We present a method of fabricating aperture tapered-fiber metal-coated SNOM probes with a corrugated core surface which assures efficient photon-to-plasmon conversion and thus high energy throughput. High energy throughput allows for a small apex aperture and high resolution. The procedure consists of recording of Bragg grating in the to-be-tapered part of a Ge-doped silica fiber and chemical etching with the Turner method. Bragg gratings are recorded with UV light through nearly sinusoidal phase masks of chosen lattice constants. The refractive index contrast in the Bragg grating differentiates the etch rate of the Ge-doped hydrogenated fiber core in exposed and unexposed parts by about 100 nm/min at room temperature.
引用
收藏
页数:7
相关论文
共 50 条
  • [1] Scanning near-field optical microscopy and near-field optical probes: properties, fabrication, and control of parameters
    Dryakhlushin, V. F.
    Veiko, V. P.
    Voznesenskii, N. B.
    [J]. QUANTUM ELECTRONICS, 2007, 37 (02) : 193 - 203
  • [2] Improved probes for scanning near-field optical microscopy
    Suh, YD
    Zenobi, R
    [J]. ADVANCED MATERIALS, 2000, 12 (15) : 1139 - +
  • [3] Nanostructured probes for scanning near-field optical microscopy
    Drews, D
    Ehrfeld, W
    Lacher, M
    Mayr, K
    Noell, W
    Schmitt, S
    Abraham, M
    [J]. NANOTECHNOLOGY, 1999, 10 (01) : 61 - 64
  • [4] Batch fabrication of cantilever array aperture probes for scanning near-field optical microscopy
    Zhang, Y.
    Docherty, K. E.
    Weaver, J. M. R.
    [J]. MICROELECTRONIC ENGINEERING, 2010, 87 (5-8) : 1229 - 1232
  • [5] OPTOELECTRONIC DETECTOR PROBES FOR SCANNING NEAR-FIELD OPTICAL MICROSCOPY
    DANZEBRINK, HU
    [J]. JOURNAL OF MICROSCOPY-OXFORD, 1994, 176 : 276 - 280
  • [6] Gold Nanocone Near-Field Scanning Optical Microscopy Probes
    Fleischer, Monika
    Weber-Bargioni, Alexander
    Altoe, M. Virginia P.
    Schwartzberg, Adam M.
    Schuck, P. James
    Cabrini, Stefano
    Kern, Dieter P.
    [J]. ACS NANO, 2011, 5 (04) : 2570 - 2579
  • [7] Scanning near-field optical microscope probes: Fabrication and properties
    Dryakhlushin, V. F.
    [J]. 2005 15th International Crimean Conference Microwave & Telecommunication Technology, Vols 1 and 2, Conference Proceedings, 2005, : 603 - 604
  • [8] Near-field scanning optical microscopy using polymethylmethacrylate optical fiber probes
    Chibani, H.
    Dukenbayev, K.
    Mensi, M.
    Sekatskii, S. K.
    Dietler, G.
    [J]. ULTRAMICROSCOPY, 2010, 110 (03) : 211 - 215
  • [9] Coaxial probes for scanning near-field microscopy
    Leinhos, T
    Rudow, O
    Stopka, M
    Vollkopf, A
    Oesterschulze, E
    [J]. JOURNAL OF MICROSCOPY, 1999, 194 : 349 - 352
  • [10] Scanning near-field optical microscopy with aperture probes: Fundamentals and applications
    Hecht, B
    Sick, B
    Wild, UP
    Deckert, V
    Zenobi, R
    Martin, OJF
    Pohl, DW
    [J]. JOURNAL OF CHEMICAL PHYSICS, 2000, 112 (18): : 7761 - 7774