Legendre spectral method for the fractional Bratu problem

被引:32
|
作者
Singh, Harendra [1 ]
Ghassabzadeh, Fahimeh Akhavan [2 ]
Tohidi, Emran [3 ,4 ]
Cattani, Carlo [5 ,6 ]
机构
[1] Post Grad Coll Ghazipur, Dept Math, Ghazipur, India
[2] Univ Gonabad, Dept Math, Fac Sci, Gonabad, Iran
[3] Ton Duc Thang Univ, Informetr Res Grp, Ho Chi Minh City, Vietnam
[4] Ton Duc Thang Univ, Fac Math & Stat, Ho Chi Minh City, Vietnam
[5] Univ Tuscia, Engn Sch DEIM, Viterbo, Italy
[6] Azerbaijan Univ, Baku, Azerbaijan
关键词
collocation method; fractional Bratu's equation; Legendre scaling functions; EQUATIONS; CALCULUS;
D O I
10.1002/mma.6334
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, the Legendre spectral collocation method (LSCM) is applied for the solution of the fractional Bratu's equation. It shows the high accuracy and low computational cost of the LSCM compared with some other numerical methods. The fractional Bratu differential equation is transformed into a nonlinear system of algebraic equations for the unknown Legendre coefficients and solved with some spectral collocation methods. Some illustrative examples are also given to show the validity and applicability of this method, and the obtained results are comparedwith the existing studies to highlight its high efficiency and neglectable error.
引用
收藏
页码:5941 / 5952
页数:12
相关论文
共 50 条
  • [1] Using Legendre spectral element method with Quasi-linearization method for solving Bratu's problem
    Lotfi, Mahmoud
    Alipanah, Amjad
    COMPUTATIONAL METHODS FOR DIFFERENTIAL EQUATIONS, 2019, 7 (04): : 580 - 588
  • [2] Numerical Solution of Fractional Bratu Type Equations with Legendre Reproducing Kernel Method
    Sakar M.G.
    Saldır O.
    Akgül A.
    International Journal of Applied and Computational Mathematics, 2018, 4 (5)
  • [3] Chebyshev Pseudo-Spectral Method for Bratu’s Problem
    M. H. Noori Skandari
    M. Ghaznavi
    Iranian Journal of Science and Technology, Transactions A: Science, 2017, 41 : 913 - 921
  • [4] Chebyshev Pseudo-Spectral Method for Bratu's Problem
    Skandari, M. H. Noori
    Ghaznavi, M.
    IRANIAN JOURNAL OF SCIENCE AND TECHNOLOGY TRANSACTION A-SCIENCE, 2017, 41 (A4): : 913 - 921
  • [5] On the solutions of the fractional Bratu's problem
    Alchikh, R.
    Khuri, S. A.
    JOURNAL OF INTERDISCIPLINARY MATHEMATICS, 2020, 23 (06) : 1093 - 1107
  • [6] A LEGENDRE SPECTRAL ELEMENT METHOD FOR THE STEFAN PROBLEM
    RONQUIST, EM
    PATERA, AT
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 1987, 24 (12) : 2273 - 2299
  • [7] Legendre spectral collocation technique for fractional inverse heat conduction problem
    Abdelkawy, M. A.
    Babatin, Mohammed M.
    Alnahdi, Abeer S.
    Taha, T. M.
    INTERNATIONAL JOURNAL OF MODERN PHYSICS C, 2022, 33 (05):
  • [8] A Legendre spectral Galerkin method for the biharmonic Dirichlet problem
    Bialecki, B.
    Karageorghis, A.
    2001, Society for Industrial and Applied Mathematics Publications (22):
  • [9] A legendre spectral collocation method for the biharmonic Dirichlet problem
    Bialecki, B
    Karageorghis, A
    ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2000, 34 (03): : 637 - 662
  • [10] A Legendre spectral Galerkin method for the biharmonic Dirichlet problem
    Bialecki, B
    Karageorghis, A
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2000, 22 (05): : 1549 - 1569