Legendre spectral collocation technique for fractional inverse heat conduction problem

被引:7
|
作者
Abdelkawy, M. A. [1 ,2 ]
Babatin, Mohammed M. [1 ]
Alnahdi, Abeer S. [1 ]
Taha, T. M. [2 ]
机构
[1] Imam Mohammad Ibn Saud Islamic Univ IMSIU, Fac Sci, Dept Math & Stat, Riyadh, Saudi Arabia
[2] Beni Suef Univ, Fac Sci, Dept Math, Bani Suwayf, Egypt
来源
关键词
Inverse problem; spectral collocation method; fractional calculus; ALGORITHM; EQUATION;
D O I
10.1142/S0129183122500656
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
For fractional inverse heat conduction problem (FIHCP), this paper introduces a numerical study. For the proposed FIHCP, in addition to the unknown function of temperature, the boundary heat fluxes are also unknown. Related to the two independent variables, the proposed scheme uses a fully spectral collocation treatment. Our technique is determined to be more accurate, efficient and practicable. The obtained results confirmed the exponential convergence of the spectral scheme.
引用
收藏
页数:15
相关论文
共 50 条
  • [1] Jacobi spectral collocation technique for fractional inverse parabolic problem
    Abdelkawy, M. A.
    Zaky, M. E. A.
    Babatin, Mohammed M.
    Alnahdi, Abeer S.
    ALEXANDRIA ENGINEERING JOURNAL, 2022, 61 (08) : 6221 - 6236
  • [2] Jacobi Spectral Collocation Technique for Time-Fractional Inverse Heat Equations
    Abdelkawy, Mohamed A.
    Amin, Ahmed Z. M.
    Babatin, Mohammed M.
    Alnahdi, Abeer S.
    Zaky, Mahmoud A.
    Hafez, Ramy M.
    FRACTAL AND FRACTIONAL, 2021, 5 (03)
  • [3] Fully Legendre spectral collocation technique for stochastic heat equations
    Abdelkawy, Mohamed A.
    Ahmad, Hijaz
    Jeelani, Mdi Begum
    Alnahdi, Abeer S.
    OPEN PHYSICS, 2021, 19 (01): : 921 - 931
  • [4] Regularization Technique for an Inverse Space-Fractional Backward Heat Conduction Problem
    Milad Karimi
    Fridoun Moradlou
    Mojtaba Hajipour
    Journal of Scientific Computing, 2020, 83
  • [5] Regularization Technique for an Inverse Space-Fractional Backward Heat Conduction Problem
    Karimi, Milad
    Moradlou, Fridoun
    Hajipour, Mojtaba
    JOURNAL OF SCIENTIFIC COMPUTING, 2020, 83 (02)
  • [6] Legendre Spectral Collocation Technique for Advection Dispersion Equations Included Riesz Fractional
    Al-Shomrani, Mohamed M.
    Abdelkawy, Mohamed A.
    FRACTAL AND FRACTIONAL, 2022, 6 (01)
  • [7] A spacetime collocation Trefftz method for solving the inverse heat conduction problem
    Ku, Cheng-Yu
    Liu, Chih-Yu
    Xiao, Jing-En
    Huang, Wei-Po
    Su, Yan
    ADVANCES IN MECHANICAL ENGINEERING, 2019, 11 (07)
  • [8] A spectral stochastic approach to the inverse heat conduction problem
    Narayanan, VAB
    Zabaras, N
    COMPUTATIONAL FLUID AND SOLID MECHANICS 2003, VOLS 1 AND 2, PROCEEDINGS, 2003, : 1855 - 1858
  • [9] Numerical approximation of solution of an inverse heat conduction problem based on Legendre polynomials
    Shidfar, A
    Pourgholi, R
    APPLIED MATHEMATICS AND COMPUTATION, 2006, 175 (02) : 1366 - 1374
  • [10] Shifted fractional Legendre spectral collocation technique for solving fractional stochastic Volterra integro-differential equations
    E. H. Doha
    M. A. Abdelkawy
    A. Z. M. Amin
    António M. Lopes
    Engineering with Computers, 2022, 38 : 1363 - 1373