Global observer design for Navier-Stokes equations in 2D

被引:2
|
作者
Zayats, Mykhaylo [1 ]
Fridman, Emilia [2 ]
Zhuk, Sergiy [1 ]
机构
[1] IBM Res Europe, Dublin, Ireland
[2] Tel Aviv Univ, Dept Elect Engn Syst, Tel Aviv, Israel
来源
2021 60TH IEEE CONFERENCE ON DECISION AND CONTROL (CDC) | 2021年
关键词
NONLINEAR DISSIPATIVE SYSTEMS; FINITE DETERMINING PARAMETERS; FEEDBACK-CONTROL;
D O I
10.1109/CDC45484.2021.9683275
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
We consider Navier-Stokes equations on a rectangle with periodic boundary conditions, and known input. Given continuous measurements as averages of NSE' solution over a set of squares we design a globally converging observer for NSE by relying upon Lyapunov method: we propose a parametric LMI for determining observer's gain and size of squares, required for the global convergence. We illustrate the numerical efficacy of our algorithm by applying it to estimate states of NSE with Kolmogorov forcing.
引用
收藏
页码:1862 / 1867
页数:6
相关论文
共 50 条
  • [21] Global Solutions to 2D Compressible Isothermal Navier-Stokes Equations on Thin Domains
    Li, Sai
    Sun, Yongzhong
    JOURNAL OF MATHEMATICAL FLUID MECHANICS, 2023, 25 (01)
  • [22] The Existence of Global Attractors for 2D Navier-Stokes Equations in H~k Spaces
    Yin Di ZHANG Ling Yu SONGFaculty of Science
    ActaMathematicaSinica(EnglishSeries), 2009, 25 (01) : 51 - 58
  • [23] UPPER BOUNDS ON THE DIMENSION OF THE GLOBAL ATTRACTOR OF THE 2D NAVIER-STOKES EQUATIONS ON THE β−PLANE
    Farhat, Aseel
    Kumar, Anuj
    Martinez, Vincent R.
    arXiv,
  • [24] Global solutions of stochastic 2D Navier-Stokes equations with Lévy noise
    DONG Zhao XIE YinChao Institute of Applied MathematicsAcademy of Mathematics and Systems ScienceChinese Academy of SciencesBeijing China School of MathematicsXuzhou Normal UniversityXuzhou China
    ScienceinChina(SeriesA:Mathematics), 2009, 52 (07) : 1497 - 1524
  • [25] Sampled-data observer for 2D Navier-Stokes equation
    Kang, Wen
    Fridman, Emilia
    Zhuk, Sergiy
    2019 IEEE 58TH CONFERENCE ON DECISION AND CONTROL (CDC), 2019, : 1201 - 1206
  • [26] Dirichlet quotients and 2D periodic Navier-Stokes equations
    Constantin, P
    Foias, C
    Kukavica, I
    Majda, AJ
    JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 1997, 76 (02): : 125 - 153
  • [27] On the steady Navier-Stokes equations in 2D exterior domains
    Korobkov, Mikhail, V
    Pileckas, Konstantin
    Russo, Remigio
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2020, 269 (03) : 1796 - 1828
  • [28] Inviscid limit for 2D stochastic Navier-Stokes equations
    Cipriano, Fernanda
    Torrecilla, Ivan
    STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2015, 125 (06) : 2405 - 2426
  • [29] Averaging Principles for Stochastic 2D Navier-Stokes Equations
    Gao, Peng
    JOURNAL OF STATISTICAL PHYSICS, 2022, 186 (02)
  • [30] ON THE NUMBER OF DETERMINING NODES FOR THE 2D NAVIER-STOKES EQUATIONS
    JONES, DA
    TITI, ES
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1992, 168 (01) : 72 - 88