Context-Aware 3D Object Detection From a Single Image in Autonomous Driving

被引:5
|
作者
Zhou, Dingfu [1 ,2 ]
Song, Xibin [1 ,2 ]
Fang, Jin [1 ,2 ]
Dai, Yuchao [3 ]
Li, Hongdong [4 ]
Zhang, Liangjun [1 ,2 ]
机构
[1] Baidu Res, Robot & Autonomous Driving Lab, Beijing 100085, Peoples R China
[2] Natl Engn Lab Deep Learning Technol & Applicat, Beijing 100193, Peoples R China
[3] Northwestern Polytech Univ, Sch Elect & Informat, Xian 710060, Peoples R China
[4] Australian Natl Univ, Coll Engn & Comp Sci, Canberra, ACT 0200, Australia
基金
中国国家自然科学基金; 澳大利亚研究理事会;
关键词
Three-dimensional displays; Object detection; Training; Feature extraction; Task analysis; Sensors; Detectors; Monocular 3D object detection; context-aware feature aggregation; self-attention; RECOGNITION; MODEL;
D O I
10.1109/TITS.2022.3154022
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
Camera sensors have been widely used in Driver-Assistance and Autonomous Driving Systems due to their rich texture information. Recently, with the development of deep learning techniques, many approaches have been proposed to detect objects in 3D from a single frame, however, there is still much room for improvement. In this paper, we generally review the recently proposed state-of-the-art monocular-based 3D object detection approaches first. Based on the analysis of the disadvantage of previous center-based frameworks, a novel feature aggregation strategy has been proposed to boost the 3D object detection by exploring the context information. Specifically, an Instance-Guided Spatial Attention (IGSA) module is proposed to collect the local instance information and the Channel-Wise Feature Attention (CWFA) module is employed for aggregating the global context information. In addition, an instance-guided object regression strategy is also proposed to alleviate the influence of center location prediction uncertainty in the inference process. Finally, the proposed approach has been verified on the public 3D object detection benchmark. The experimental results show that the proposed approach can significantly boost the performance of the baseline method on both 3D detection and 2D Bird's-Eye View among all three categories. Furthermore, our method outperforms all the monocular-based methods (even these trained with depth as auxiliary inputs) and achieves state-of-the-art performance on the KITTI benchmark.
引用
收藏
页码:18568 / 18580
页数:13
相关论文
共 50 条
  • [31] Traffic Context Aware Data Augmentation for Rare Object Detection in Autonomous Driving
    Li, Naifan
    Song, Fan
    Zhang, Ying
    Liang, Pengpeng
    Cheng, Erkang
    2022 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION (ICRA 2022), 2022, : 4548 - 4554
  • [32] Scene Context-Aware Salient Object Detection
    Siris, Avishek
    Jiao, Jianbo
    Tam, Gary K. L.
    Xie, Xianghua
    Lau, Rynson W. H.
    2021 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2021), 2021, : 4136 - 4146
  • [33] Context-aware network for RGB-D salient object detection
    Liang, Fangfang
    Duan, Lijuan
    Ma, Wei
    Qiao, Yuanhua
    Miao, Jun
    Ye, Qixiang
    PATTERN RECOGNITION, 2021, 111
  • [34] Context-Aware Transfer Attacks for Object Detection
    Cai, Zikui
    Xie, Xinxin
    Li, Shasha
    Yin, Mingjun
    Song, Chengyu
    Krishnamurthy, Srikanth V.
    Roy-Chowdhury, Amit K.
    Asif, M. Salman
    THIRTY-SIXTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE / THIRTY-FOURTH CONFERENCE ON INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE / THE TWELVETH SYMPOSIUM ON EDUCATIONAL ADVANCES IN ARTIFICIAL INTELLIGENCE, 2022, : 149 - 157
  • [35] GS3D: An Efficient 3D Object Detection Framework for Autonomous Driving
    Li, Buyu
    Ouyang, Wanli
    Sheng, Lu
    Zeng, Xingyu
    Wang, Xiaogang
    2019 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2019), 2019, : 1019 - 1028
  • [36] Context-aware trajectory prediction for autonomous driving in heterogeneous environments
    Li, Zhenning
    Chen, Zhiwei
    Li, Yunjian
    Xu, Chengzhong
    COMPUTER-AIDED CIVIL AND INFRASTRUCTURE ENGINEERING, 2024, 39 (01) : 120 - 135
  • [37] Research on 3D Point Cloud Object Detection Algorithm for Autonomous Driving
    Jiang, Haiyang
    Lu, Yuanyao
    Chen, Shengnan
    MATHEMATICAL PROBLEMS IN ENGINEERING, 2022, 2022
  • [38] About the Ambiguity of Data Augmentation for 3D Object Detection in Autonomous Driving
    Reuse, Matthias
    Simon, Martin
    Sick, Bernhard
    2021 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION WORKSHOPS (ICCVW 2021), 2021, : 979 - 987
  • [39] Efficient Uncertainty Estimation for Monocular 3D Object Detection in Autonomous Driving
    Liu, Zechen
    Han, Zhihua
    2021 IEEE INTELLIGENT TRANSPORTATION SYSTEMS CONFERENCE (ITSC), 2021, : 2711 - 2718
  • [40] Pseudo-Stereo for Monocular 3D Object Detection in Autonomous Driving
    Chen, Yi-Nan
    Dai, Hang
    Ding, Yong
    2022 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2022), 2022, : 877 - 887