Inference for Order Reduction in Markov Random Fields

被引:0
|
作者
Gallagher, Andrew C. [1 ]
Batra, Dhruv [2 ]
Parikh, Devi [2 ]
机构
[1] Eastman Kodak Co, Rochester, NY 14650 USA
[2] Toyota Technol Inst Chicago, Chicago, IL 60637 USA
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper presents an algorithm for order reduction of factors in High-Order Markov Random Fields (HOMRFs). Standard techniques for transforming arbitrary high-order factors into pairwise ones have been known for a long time. In this work, we take a fresh look at this problem with the following motivation: It is important to keep in mind that order reduction is followed by an inference procedure on the order-reducedMRF. Since there are many possible ways of performing order reduction, a technique that generates "easier" pairwise inference problems is a better reduction. With this motivation in mind, we introduce a new algorithm called Order Reduction Inference (ORI) that searches over a space of order reductionmethods to minimize the difficulty of the resultant pairwise inference problem. We set up this search problem as an energy minimization problem. We show that application of ORI for order reduction outperforms known order reduction techniques both in simulated problems and in real-world vision applications.
引用
收藏
页数:8
相关论文
共 50 条