Spectral unmixing using minimum volume constrained Kullback-Leibler divergence

被引:0
|
作者
Mohammed, Salah A. G. [1 ]
Meddeber, Lila [2 ]
Zouagui, Tarik [1 ]
Karoui, Moussa S. [3 ]
机构
[1] Univ Sci & Technol Oran, Embedded Syst & Microsyst Lab, Oran, Algeria
[2] Univ Sci & Technol Oran, Res Lab Intelligent Syst, Oran, Algeria
[3] Ctr Tech Spatiales, Arzew, Algeria
关键词
spectral unmixing; hyperspectral imaging; linear mixing model; Kullback-Leibler; nonnegative matrix factorization; FAST ALGORITHM;
D O I
10.1117/1.JRS.14.024511
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Spectral unmixing (SU) has been a subject of particular attention in the hyperspectral imaging literature. Most SU algorithms are based on the linear mixing model (LMM), which assumes that one pixel of the image is the linear combination of a given number of pure spectra called endmembers, weighted by their coefficients called abundances. SU is a technique to identify these endmembers and their relative abundances. We present an LMM approach based on nonnegative matrix factorization, combining the minimum volume constraint (MVC) and Kullback-Leibler (KL) divergence referred to as KL-MVC. The proposed method is evaluated using synthetic images with different noise levels and real images with different methods of initialization, and high performance has been achieved compared with the widely used LMM-based methods. (C) 2020 Society of Photo-Optical Instrumentation Engineers (SPIE)
引用
收藏
页数:16
相关论文
共 50 条
  • [21] Detecting abnormal situations using the Kullback-Leibler divergence
    Zeng, Jiusun
    Kruger, Uwe
    Geluk, Jaap
    Wang, Xun
    Xie, Lei
    AUTOMATICA, 2014, 50 (11) : 2777 - 2786
  • [22] Fault tolerant learning using Kullback-Leibler divergence
    Sum, John
    Leung, Chi-sing
    Hsu, Lipin
    TENCON 2007 - 2007 IEEE REGION 10 CONFERENCE, VOLS 1-3, 2007, : 1193 - +
  • [23] Distributions of the Kullback-Leibler divergence with applications
    Belov, Dmitry I.
    Armstrong, Ronald D.
    BRITISH JOURNAL OF MATHEMATICAL & STATISTICAL PSYCHOLOGY, 2011, 64 (02): : 291 - 309
  • [24] MINIMAL KULLBACK-LEIBLER DIVERGENCE FOR CONSTRAINED LEVY--ITO PROCESSES
    Jaimungal, Sebastian
    Pesenti, Silvana M.
    Sanchez-betancourt, Leandro
    SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 2024, 62 (02) : 982 - 1005
  • [25] Model Fusion with Kullback-Leibler Divergence
    Claici, Sebastian
    Yurochkin, Mikhail
    Ghosh, Soumya
    Solomon, Justin
    25TH AMERICAS CONFERENCE ON INFORMATION SYSTEMS (AMCIS 2019), 2019,
  • [26] Anomaly Detection Using the Kullback-Leibler Divergence Metric
    Afgani, Mostafa
    Sinanovic, Sinan
    Haas, Harald
    ISABEL: 2008 FIRST INTERNATIONAL SYMPOSIUM ON APPLIED SCIENCES IN BIOMEDICAL AND COMMMUNICATION TECHNOLOGIES, 2008, : 197 - 201
  • [27] Android Malware Detection Using Kullback-Leibler Divergence
    Cooper, Vanessa N.
    Haddad, Hisham M.
    Shahriar, Hossain
    ADCAIJ-ADVANCES IN DISTRIBUTED COMPUTING AND ARTIFICIAL INTELLIGENCE JOURNAL, 2014, 3 (02): : 17 - 24
  • [28] An Asymptotic Test for Bimodality Using The Kullback-Leibler Divergence
    Contreras-Reyes, Javier E.
    SYMMETRY-BASEL, 2020, 12 (06):
  • [29] Estimating Kullback-Leibler Divergence Using Kernel Machines
    Ahuja, Kartik
    CONFERENCE RECORD OF THE 2019 FIFTY-THIRD ASILOMAR CONFERENCE ON SIGNALS, SYSTEMS & COMPUTERS, 2019, : 690 - 696
  • [30] Optimal robust estimates using the Kullback-Leibler divergence
    Yohai, Victor J.
    STATISTICS & PROBABILITY LETTERS, 2008, 78 (13) : 1811 - 1816