Battery pack consistency modeling based on generative adversarial networks

被引:29
|
作者
Fan, Xinyuan [1 ]
Zhang, Weige [1 ]
Sun, Bingxiang [1 ]
Zhang, Junwei [1 ]
He, Xitian [1 ]
机构
[1] Beijing Jiaotong Univ, Dept Elect Engn, Shang Yuan Cun 3, Beijing 100044, Peoples R China
基金
中国国家自然科学基金;
关键词
Energy utilization efficiency; Battery pack consistency; Consistency modeling; Generative adversarial networks; Embedded system; LITHIUM-ION BATTERIES; TO-CELL VARIATION; CYCLE LIFE; CAPACITY; TEMPERATURE;
D O I
10.1016/j.energy.2021.122419
中图分类号
O414.1 [热力学];
学科分类号
摘要
In working condition of battery packs, the battery pack consistency has a great impact on the overall performance of the battery pack. In order to build an accurate battery pack model, we need to build a battery pack consistency model. Firstly, we used a Gaussian mixture model to fit the statistical characteristics of a single parameter. This method can accurately fit the skewness in the parameter distribution and fit the multi-peak characteristics that may appear. Secondly, we constructed a nonparametric battery pack consistency model using a Generative Adversarial Networks (GAN). Our consistency model can accurately describe the statistical characteristics of a single parameter and fits the correlation coefficient between parameters. The battery pack model substituted into the GAN-generated battery parameters exhibits a very high similarity to the experimental data. The relative errors of the simulation results are less than 0.6 % for the terminal voltage and less than 0.3 % for the energy utilization efficiency (EUE), proving the advantages of the GAN consistency model in fitting the distribution of the battery parameters. Finally, we implemented the GAN consistency model in an embedded system with limited computing resources, which proves that our proposed model has the ability to run normally on existing BMS. (C) 2021 Elsevier Ltd. All rights reserved.
引用
收藏
页数:13
相关论文
共 50 条
  • [41] An Ensemble Denoiser Based on Generative Adversarial Networks to Eliminate Adversarial Perturbations
    Yang, Rui
    Cao, Tian-Jie
    Chen, Xiu-Qing
    Zhang, Feng-Rong
    Qi, Yun-Yan
    Journal of Computers (Taiwan), 2021, 32 (05) : 55 - 75
  • [42] Distributed Generative Adversarial Networks for mmWave Channel Modeling in Wireless UAV Networks
    Zhang, Qianqian
    Ferdowsi, Aidin
    Saad, Walid
    IEEE INTERNATIONAL CONFERENCE ON COMMUNICATIONS (ICC 2021), 2021,
  • [43] A Copula-based battery pack consistency modeling method and its application on the energy utilization efficiency estimation
    Jiang, Yan
    Jiang, Jiuchun
    Zhang, Caiping
    Zhang, Weige
    Gao, Yang
    Mi, Chris
    ENERGY, 2019, 189
  • [44] Single Image Dehazing Based on Generative Adversarial Networks
    Wu, Mengyun
    Li, Bo
    INTELLIGENT COMPUTING THEORIES AND APPLICATION, ICIC 2022, PT II, 2022, 13394 : 460 - 469
  • [45] Multisensor Image Fusion based on Generative Adversarial Networks
    Lebedev, M. A.
    Komarov, D., V
    Vygolov, O. V.
    Vizilter, Yu. V.
    IMAGE AND SIGNAL PROCESSING FOR REMOTE SENSING XXV, 2019, 11155
  • [46] SINGING VOICE SYNTHESIS BASED ON GENERATIVE ADVERSARIAL NETWORKS
    Hono, Yukiya
    Hashimoto, Kei
    Oura, Keiichiro
    Nankaku, Yoshihiko
    Tokuda, Keiichi
    2019 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP), 2019, : 6955 - 6959
  • [47] Generative Adversarial Network Based Adaptive Transmitter Modeling
    Kashyap, Priyank
    Ravichandiran, Prasanth Prabu
    Baron, Dror
    Wong, Chau-Wai
    Wu, Tianfu
    Franzon, Paul D.
    2023 IEEE 73RD ELECTRONIC COMPONENTS AND TECHNOLOGY CONFERENCE, ECTC, 2023, : 2183 - 2187
  • [48] Image Creation Based on Transformer and Generative Adversarial Networks
    Liu, Hangyu
    Liu, Qicheng
    IEEE ACCESS, 2022, 10 : 108296 - 108306
  • [49] NEGAN: Network Embedding based on Generative Adversarial Networks
    Ban, Yinfeng
    Pu, Juhua
    Chen, Yujun
    Wang, Yuanhong
    2018 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2018,
  • [50] Latent Dirichlet allocation based generative adversarial networks
    Pan, Lili
    Cheng, Shen
    Liu, Jian
    Tang, Peijun
    Wang, Bowen
    Ren, Yazhou
    Xu, Zenglin
    NEURAL NETWORKS, 2020, 132 : 461 - 476