Deep-belief network for predicting potential miRNA-disease associations

被引:122
|
作者
Chen, Xing [2 ,3 ,4 ]
Li, Tian-Hao [1 ]
Zhao, Yan [1 ]
Wang, Chun-Chun [1 ]
Zhu, Chi-Chi [1 ]
机构
[1] China Univ Min & Technol, Sch Informat & Control Engn, Xuzhou 221116, Jiangsu, Peoples R China
[2] China Univ Min & Technol, Artificial Intelligence Res Inst, Xuzhou 221116, Jiangsu, Peoples R China
[3] China Univ Min & Technol, Inst Bioinformat, Xuzhou 221116, Jiangsu, Peoples R China
[4] China Univ Min & Technol, Big Data Res Ctr, Xuzhou 221116, Jiangsu, Peoples R China
基金
中国国家自然科学基金;
关键词
microRNA; disease; association prediction; deep-belief network; unsupervised pre-training; supervised fine-tuning; LUNG-CANCER; MICRORNAS; EXPRESSION; GROWTH;
D O I
10.1093/bib/bbaa186
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
MicroRNA (miRNA) plays an important role in the occurrence, development, diagnosis and treatment of diseases. More and more researchers begin to pay attention to the relationship between miRNA and disease. Compared with traditional biological experiments, computational method of integrating heterogeneous biological data to predict potential associations can effectively save time and cost. Considering the limitations of the previous computational models, we developed the model of deep-belief network for miRNA-disease association prediction (DBNMDA). We constructed feature vectors to pre-train restricted Boltzmann machines for all miRNA-disease pairs and applied positive samples and the same number of selected negative samples to fine-tune DBN to obtain the final predicted scores. Compared with the previous supervised models that only use pairs with known label for training, DBNMDA innovatively utilizes the information of all miRNA-disease pairs during the pre-training process. This step could reduce the impact of too few known associations on prediction accuracy to some extent. DBNMDA achieves the AUC of 0.9104 based on global leave-one-out cross validation (LOOCV), the AUC of 0.8232 based on local LOOCV and the average AUC of 0.9048 +/- 0.0026 based on 5-fold cross validation. These AUC5 are better than other previous models. In addition, three different types of case studies for three diseases were implemented to demonstrate the accuracy of DBNMDA. As a result, 84% (breast neoplasms), 100% (lung neoplasms) and 88% (esophageal neoplasms) of the top 50 predicted miRNAs were verified by recent literature. Therefore, we could conclude that DBNMDA is an effective method to predict potential miRNA-disease associations.
引用
收藏
页数:10
相关论文
共 50 条
  • [41] EMCMDA: predicting miRNA-disease associations via efficient matrix completion
    Qin, Chao
    Zhang, Jiancheng
    Ma, Lingyu
    SCIENTIFIC REPORTS, 2024, 14 (01):
  • [42] PDMDA: predicting deep-level miRNA-disease associations with graph neural networks and sequence features
    Yan, Cheng
    Duan, Guihua
    Li, Na
    Zhang, Lishen
    Wu, Fang-Xiang
    Wang, Jianxin
    BIOINFORMATICS, 2022, 38 (08) : 2226 - 2234
  • [43] AE-RW: Predicting miRNA-disease associations by using autoencoder and random walk on miRNA-gene-disease heterogeneous network
    Lu, Pengli
    Jiang, Jicheng
    COMPUTATIONAL BIOLOGY AND CHEMISTRY, 2024, 110
  • [44] NTSMDA: prediction of miRNA-disease associations by integrating network topological similarity
    Sun, Dongdong
    Li, Ao
    Feng, Huanqing
    Wang, Minghui
    MOLECULAR BIOSYSTEMS, 2016, 12 (07) : 2224 - 2232
  • [45] PGCNMDA: Learning node representations along paths with graph convolutional network for predicting miRNA-disease associations
    Chu, Shuang
    Duan, Guihua
    Yan, Cheng
    METHODS, 2024, 229 : 71 - 81
  • [46] Prediction of Potential miRNA-Disease Associations Based on a Masked Graph Autoencoder
    Feng, Hailin
    Ke, Chenchen
    Zou, Quan
    Zhu, Zhechen
    Liu, Tongcun
    IEEE-ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, 2024, 21 (06) : 1874 - 1885
  • [47] Prediction of Potential miRNA-Disease Associations Through a Novel Unsupervised Deep Learning Framework with Variational Autoencoder
    Zhang, Li
    Chen, Xing
    Yin, Jun
    CELLS, 2019, 8 (09)
  • [48] Predicting miRNA-disease associations using an ensemble learning framework with resampling method
    Dai, Qiguo
    Wang, Zhaowei
    Liu, Ziqiang
    Duan, Xiaodong
    Song, Jinmiao
    Guo, Maozu
    BRIEFINGS IN BIOINFORMATICS, 2022, 23 (01)
  • [49] Predicting Mirna-Disease Associations Based on Neighbor Selection Graph Attention Networks
    Zhao, Huan
    Li, Zhengwei
    You, Zhu-Hong
    Nie, Ru
    Zhong, Tangbo
    IEEE-ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, 2023, 20 (02) : 1298 - 1307
  • [50] Predicting miRNA-disease associations based on multi-view information fusion
    Xie, Xuping
    Wang, Yan
    Sheng, Nan
    Zhang, Shuangquan
    Cao, Yangkun
    Fu, Yuan
    FRONTIERS IN GENETICS, 2022, 13