Engineering Yeast for De Novo Synthesis of the Insect Repellent Nepetalactone

被引:9
|
作者
Davies, Meghan E. [1 ,2 ]
Tsyplenkov, Daniel [1 ,2 ]
Martin, Vincent J. J. [1 ,2 ]
机构
[1] Concordia Univ, Dept Biol, Montreal, PQ H4B 1R6, Canada
[2] Concordia Univ, Ctr Appl Synthet Biol, Montreal, PQ H4B 1R6, Canada
来源
ACS SYNTHETIC BIOLOGY | 2021年 / 10卷 / 11期
基金
加拿大自然科学与工程研究理事会;
关键词
nepetalactone; monoterpene; Saccharomyces cerevisiae; cytochrome P450; 8-hydroxygeraniol; GERANIOL; PATHWAYS; ENZYMES;
D O I
10.1021/acssynbio.1c00420
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
While nepetalactone, the active ingredient in catnip, is a potent insect repellent, its low in planta accumulation limits its commercial viability as an alternative repellent. Here we describe for the first time de novo nepetalactone synthesis in Saccharomyces cerevisiae, enabling sustainable and scalable production. Nepetalactone production required introducing eight exogenous genes including the cytochrome P450 geraniol-8-hydroxylase, the bottleneck of the heterologous pathway. Combinatorial assessment of geraniol-8-hydroxylase and cytochrome P450 reductase variants, and copy-number variations were used to overcome this bottleneck. We found that several reductases improved hydroxylation activity and increasing geraniol-8-hydroxylase gene copy number improved 8-hydroxygeraniol titers. The accumulation of an unwanted metabolite implied inefficient channeling of carbon through the pathway. With the native yeast old yellow enzymes previously shown to use monoterpene intermediates as substrates, both homologues were deleted. These deletions increased 8-hydroxygeraniol yield, resulting in 3.10 mg/L/OD600 of nepetalactone from simple sugar in microtiter plates. This optimized pathway will benefit the development of high yielding strains for the scale up production of nepetalactone.
引用
收藏
页码:2896 / 2903
页数:8
相关论文
共 50 条
  • [41] Secreted lipases supply fatty acids for yeast growth in the absence of de novo fatty acid synthesis
    Long Nam Nguyen
    Attila Gacser
    Nosanchuk, Joshua D.
    VIRULENCE, 2011, 2 (06) : 538 - 541
  • [42] Stereocontrolled de novo synthesis of deoxynucleosides
    Buck, JR
    Prudhomme, DR
    Rizzo, CJ
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 1998, 215 : U89 - U89
  • [43] Regulation of de novo phosphatidylinositol synthesis
    Nuwayhid, Samer J.
    Vega, Martha
    Walden, Paul D.
    Monaco, Marie E.
    JOURNAL OF LIPID RESEARCH, 2006, 47 (07) : 1449 - 1456
  • [44] De novo synthesis of polyhydroxyl aminocyclohexanes
    Sar, Anobick
    Lindeman, Sergey
    Donaldson, William A.
    ORGANIC & BIOMOLECULAR CHEMISTRY, 2010, 8 (17) : 3908 - 3917
  • [45] De novo synthesis of substituted pyridines
    Henry, GD
    TETRAHEDRON, 2004, 60 (29) : 6043 - 6061
  • [46] Metabolic regulation rather than de novo enzyme synthesis dominates the osmo-adaptation of yeast
    Bouwman, Jildau
    Kiewiet, Jose
    Lindenbergh, Alexander
    van Eunen, Karen
    Siderius, Marco
    Bakker, Barbara M.
    YEAST, 2011, 28 (01) : 43 - 53
  • [47] De novo phytosterol synthesis in animals
    Michellod, Dolma
    Bien, Tanja
    Birgel, Daniel
    Violette, Marlene
    Kleiner, Manuel
    Fearn, Sarah
    Zeidler, Caroline
    Gruber-Vodicka, Harald R.
    Dubilier, Nicole
    Liebeke, Manuel
    SCIENCE, 2023, 380 (6644) : 520 - 526
  • [48] De Novo Synthesis of Benzannelated Heterocycles
    Feierfeil, Johannes
    Magauer, Thomas
    CHEMISTRY-A EUROPEAN JOURNAL, 2018, 24 (06) : 1455 - 1458
  • [49] De novo synthesis of dioxins: a review
    Zhang, Mengmei
    Buekens, Alfons
    INTERNATIONAL JOURNAL OF ENVIRONMENT AND POLLUTION, 2016, 60 (1-4) : 63 - 110
  • [50] De novo asymmetric synthesis of Aspergillide
    Xing, Yalan
    O'Doherty, George A.
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2010, 240