ColorRL: Reinforced Coloring for End-to-End Instance Segmentation

被引:0
|
作者
Tuan, Tran Anh [1 ]
Khoa, Nguyen Tuan [1 ]
Tran Minh Quan [2 ,3 ]
Jeong, Won-Ki [4 ]
机构
[1] UNIST, Dept Comp Sci & Engn, Ulsan, South Korea
[2] VinBrain, Dept Appl Sci, Hanoi, Vietnam
[3] VinUniversity, Hanoi, Vietnam
[4] Korea Univ, Dept Comp Sci & Engn, Seoul, South Korea
基金
新加坡国家研究基金会;
关键词
NETWORKS;
D O I
10.1109/CVPR46437.2021.01645
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Instance segmentation, the task of identifying and separating each individual object of interest in the image, is one of the actively studied research topics in computer vision. Although many feed-forward networks produce high-quality binary segmentation on different types of images, their final result heavily relies on the post-processing step, which separates instances from the binary mask. In comparison, the existing iterative methods extract a single object at a time using discriminative knowledge-based properties (e.g., shapes, boundaries, etc.) without relying on postprocessing. However, they do not scale well with a large number of objects. To exploit the advantages of conventional sequential segmentation methods without impairing the scalability, we propose a novel iterative deep reinforcement learning agent that learns how to differentiate multiple objects in parallel. By constructing a relational graph between pixels, we design a reward function that encourages separating pixels of different objects and grouping pixels that belong to the same instance. We demonstrate that the proposed method can efficiently perform instance segmentation of many objects without heavy post-processing.
引用
收藏
页码:16722 / 16731
页数:10
相关论文
共 50 条
  • [41] An End-to-End Neural Network Approach o Story Segmentation
    Yu, Jia
    Xie, Lei
    Xiao, Xiong
    Chng, Eng Siong
    2017 ASIA-PACIFIC SIGNAL AND INFORMATION PROCESSING ASSOCIATION ANNUAL SUMMIT AND CONFERENCE (APSIPA ASC 2017), 2017, : 171 - 176
  • [42] Autonomous Neurosurgical Instrument Segmentation Using End-to-End Learning
    Kalavakonda, Niveditha
    Hannaford, Blake
    Qazi, Zeeshan
    Sekhar, Laligam
    2019 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION WORKSHOPS (CVPRW 2019), 2019, : 514 - 516
  • [43] A new end-to-end network model for medical image segmentation
    Chen, Hongyou
    Xu, Zengyong
    JOURNAL OF APPLIED SCIENCE AND ENGINEERING, 2021, 24 (02): : 207 - 213
  • [44] Object Bounding Transformed Network for End-to-End Semantic Segmentation
    Wang, Kuan-Chung
    Wang, Chien-Yao
    Tai, Tzu-Chiang
    Wang, Jia-Ching
    2019 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2019, : 3217 - 3221
  • [45] End-to-End Detection-Segmentation System for Face Labeling
    Wen, Shiping
    Dong, Minghui
    Yang, Yin
    Zhou, Pan
    Huang, Tingwen
    Chen, Yiran
    IEEE TRANSACTIONS ON EMERGING TOPICS IN COMPUTATIONAL INTELLIGENCE, 2021, 5 (03): : 457 - 467
  • [46] Crowd Counting Using End-to-End Semantic Image Segmentation
    Khan, Khalil
    Khan, Rehan Ullah
    Albattah, Waleed
    Nayab, Durre
    Qamar, Ali Mustafa
    Habib, Shabana
    Islam, Muhammad
    ELECTRONICS, 2021, 10 (11)
  • [47] RVOS: End-to-End Recurrent Network for Video Object Segmentation
    Ventura, Carles
    Bellver, Miriam
    Girbau, Andreu
    Salvador, Amaia
    Marques, Ferran
    Giro-i-Nieto, Xavier
    2019 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2019), 2019, : 5272 - 5281
  • [48] End-to-End Referring Video Object Segmentation with Multimodal Transformers
    Botach, Adam
    Zheltonozhskii, Evgenii
    Baskin, Chaim
    2022 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2022), 2022, : 4975 - 4985
  • [49] End-to-End Learned Random Walker for Seeded Image Segmentation
    Cerrone, Lorenzo
    Zeilmann, Alexander
    Hamprecht, Fred A.
    2019 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2019), 2019, : 12551 - 12560
  • [50] End-to-End Boundary Aware Networks for Medical Image Segmentation
    Hatamizadeh, Ali
    Terzopoulos, Demetri
    Myronenko, Andriy
    MACHINE LEARNING IN MEDICAL IMAGING (MLMI 2019), 2019, 11861 : 187 - 194