Graphene nanosheets, carbon nanotubes, graphite, and activated carbon as anode materials for sodium-ion batteries

被引:221
|
作者
Luo, Xu-Feng [1 ]
Yang, Cheng-Hsien [1 ]
Peng, You-Yu [2 ]
Pu, Nen-Wen [3 ]
Ger, Ming-Der [2 ]
Hsieh, Chien-Te [4 ]
Chang, Jeng-Kuei [1 ]
机构
[1] Natl Cent Univ, Inst Mat Sci & Engn, Taoyuan, Taiwan
[2] Natl Def Univ, Dept Chem & Mat Engn, Taoyuan, Taiwan
[3] Yuan Ze Univ, Dept Photon Engn, Chungli, Taiwan
[4] Yuan Ze Univ, Dept Chem Engn & Mat Sci, Chungli, Taiwan
关键词
LITHIUM-ION; ENERGY-STORAGE; RATE CAPABILITY; LOW-COST; ELECTROLYTE; PERFORMANCE; INSERTION; CAPACITY; OXIDE; FUTURE;
D O I
10.1039/c5ta00727e
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The electrochemical sodium-ion storage properties of graphene nanosheets (GNSs), carbon nanotubes (CNTs), mesocarbon microbeads (MCMBs), and activated carbon (AC) are investigated. An irreversible oxidation occurs for the AC electrode during desodiation, limiting its use in sodium-ion batteries. The MCMB electrode shows a negligible capacity (similar to 2 mA h g(-1)), since the graphitic structure has a low surface area and is thus not capable of storing a sufficient amount of Na+. In contrast, the CNT and GNS electrodes exhibit reversible capacities of 82 and 220 mA h g(-1), respectively, at a charge-discharge rate of 30 mA g(-1). The high electro-adsorption/desorption area, large number of Na+ entrance/exit sites, and a large d-spacing of GNSs contribute to their superior Na+ storage capacity. At a high rate of 5 A g (1), the GNS electrode still delivers a capacity of as high as 105 mA h g(-1), indicating great high-power ability. The charge storage mechanism of the electrode is examined using an ex situ X-ray diffraction technique.
引用
收藏
页码:10320 / 10326
页数:7
相关论文
共 50 条
  • [31] Hollow carbon nanofibers as high-performance anode materials for sodium-ion batteries
    Han, Haixia
    Chen, Xiaoyang
    Qian, Jiangfeng
    Zhong, Faping
    Feng, Xiangming
    Chen, Weihua
    Ai, Xinping
    Yang, Hanxi
    Cao, Yuliang
    NANOSCALE, 2019, 11 (45) : 21999 - 22005
  • [32] Metal oxide/graphene composite anode materials for sodium-ion batteries
    Wang, Lei
    Wei, Zengxi
    Mao, Minglei
    Wang, Hongxia
    Li, Yutao
    Ma, Jianmin
    ENERGY STORAGE MATERIALS, 2019, 16 : 434 - 454
  • [33] Nanoengineering of Advanced Carbon Materials for Sodium-Ion Batteries
    Zhao, Shuoqing
    Guo, Ziqi
    Yang, Jian
    Wang, Chengyin
    Sun, Bing
    Wang, Guoxiu
    SMALL, 2021, 17 (48)
  • [34] Commercial activated carbon as a novel precursor of the amorphous carbon for high-performance sodium-ion batteries anode
    Li, Qi
    Zhu, Youyu
    Zhao, Pinyi
    Yuan, Chao
    Chen, Mingming
    Wang, Chengyang
    CARBON, 2018, 129 : 85 - 94
  • [35] Graphitic Carbon Materials for Advanced Sodium-Ion Batteries
    Xu, Zheng-Long
    Park, Jooha
    Yoon, Cabin
    Kim, Haegyeom
    Kang, Kisuk
    SMALL METHODS, 2019, 3 (04)
  • [36] TiO2 Nanotubes Array on Carbon Cloth as a Flexibility Anode for Sodium-Ion Batteries
    Gu, Xianli
    Wang, Saisai
    Wang, Linlin
    Wu, Chun
    Xu, Kaibing
    Zhao, Lingyu
    Liu, Qi
    Ding, Mei
    Xu, Jingli
    JOURNAL OF NANOSCIENCE AND NANOTECHNOLOGY, 2019, 19 (01) : 226 - 230
  • [37] Porous structure O-rich carbon nanotubes as anode material for sodium-ion batteries
    Jian Hao
    Lu Xu
    Jun Bai
    Xiu Wang
    Qingjie Guo
    Yanxia Wang
    Yu Yang
    Jiupeng Zhao
    Ionics, 2021, 27 : 667 - 675
  • [38] Porous structure O-rich carbon nanotubes as anode material for sodium-ion batteries
    Hao, Jian
    Xu, Lu
    Bai, Jun
    Wang, Xiu
    Guo, Qingjie
    Wang, Yanxia
    Yang, Yu
    Zhao, Jiupeng
    IONICS, 2021, 27 (02) : 667 - 675
  • [39] S-Doped N-Rich Carbon Nanosheets with Expanded Interlayer Distance as Anode Materials for Sodium-Ion Batteries
    Yang, Jiqian
    Zhou, Xianlong
    Wu, Dihua
    Zhao, Xudong
    Zhou, Zhen
    ADVANCED MATERIALS, 2017, 29 (06)
  • [40] Activated Carbon from E-Waste Plastics as a Promising Anode for Sodium-Ion Batteries
    Kumar, Uttam
    Goonetilleke, Damian
    Gaikwad, Vaibhav
    Pramudita, James C.
    Joshi, Rakesh K.
    Sharma, Neeraj
    Sahajwalla, Veena
    ACS SUSTAINABLE CHEMISTRY & ENGINEERING, 2019, 7 (12): : 10310 - 10322