Hamiltonicity of cubic Cayley graphs

被引:0
|
作者
Glover, Henry [1 ]
Marusic, Dragan [2 ,3 ]
机构
[1] Ohio State Univ, Dept Math, Columbus, OH 43210 USA
[2] Univ Ljubljana, Ljubljana 1000, Slovenia
[3] Univ Ljubljana, IMFM, Koper, Slovenia
关键词
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Following a problem posed by Lovasz in 1969, it is believed that every finite connected vertex-transitive graph has a Hamilton path. This is shown here to be true for cubic Cayley graphs arising from finite groups having a (2, s, 3)-presentation, that is, for groups G = < a, b vertical bar a(2) = 1, b(s) = 1, ( ab)(3) = 1, ...> generated by an involution a and an element b of order s >= 3 such that their product ab has order 3. More precisely, it is shown that the Cayley graph X = Cay(G, {a, b, b(-1)}) has a Hamilton cycle when vertical bar G vertical bar (and thus s) is congruent to 2 modulo 4, and has a long cycle missing only two adjacent vertices (and thus necessarily a Hamilton path) when vertical bar G vertical bar is congruent to 0 modulo 4.
引用
收藏
页码:775 / 787
页数:13
相关论文
共 50 条
  • [41] Arc-transitive cubic Cayley graphs on PSL(2,p)
    DU Shaofei WANG Furong Department of MathematicsCapital Normal UniversityBeijing China
    ScienceinChina,SerA., 2005, Ser.A.2005 (10)
  • [42] Cubic s-arc-transitive bi-Cayley graphs
    Ju, Ran
    Li, Jing Jian
    Gao, Yang
    APPLIED MATHEMATICS AND COMPUTATION, 2025, 498
  • [43] Maximum generalized local connectivities of cubic Cayley graphs on Abelian groups
    Sun, Yuefang
    Journal of Combinatorial Mathematics and Combinatorial Computing, 2015, 94 : 227 - 236
  • [45] Arc-transitive cubic Cayley graphs on PSL(2,p)
    DU Shaofei & WANG Furong Department of Mathematics
    Science China Mathematics, 2005, (10) : 3 - 14
  • [46] Isomorphisms of Cubic Cayley Graphs on Dihedral Groups and Sparse Circulant Matrices
    Kovacs, Istvan
    ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2023, 39 (04) : 618 - 632
  • [47] Arc-transitive cubic cayley graphs on PSL(2, p)
    Shaofei Du
    Furong Wang
    Science in China Series A: Mathematics, 2005, 48 : 1297 - 1308
  • [48] Arc-transitive cubic Cayley graphs on PSL(2,p)
    Du, SF
    Wang, FR
    SCIENCE IN CHINA SERIES A-MATHEMATICS, 2005, 48 (10): : 1297 - 1308
  • [49] Cubic core-free symmetric m-Cayley graphs
    Du, Jia-Li
    Conder, Marston
    Feng, Yan-Quan
    JOURNAL OF ALGEBRAIC COMBINATORICS, 2019, 50 (02) : 143 - 163
  • [50] On cubic symmetric non-Cayley graphs with solvable automorphism groups
    Feng, Yan-Quan
    Kutnar, Klavdija
    Marusic, Dragan
    Yang, Da-Wei
    DISCRETE MATHEMATICS, 2020, 343 (08)