TOPOLOGICAL ENTROPY AND PERIODS OF SELF MAPS ON COMPACT MANIFOLDS

被引:0
|
作者
Garcia Guirao, Juan Luis [1 ]
Llibre, Jaume [2 ]
机构
[1] Univ Politecn Cartagena, Hosp Marina, Dept Math Aplicada & Estadist, Cartagena 30203, Region De Murci, Spain
[2] Univ Autonoma Barcelona, Dept Math, E-08193 Barcelona, Catalonia, Spain
来源
HOUSTON JOURNAL OF MATHEMATICS | 2017年 / 43卷 / 04期
关键词
Compact manifold; topological entropy; discrete dynamical systems; Lefschetz numbers; Lefschetz zeta function; periodic point;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let (M, f) be a discrete dynamical system induced by a self-map f defined on a smooth compact connected n dimensional manifold M. We provide sufficient conditions in terms of the Lefschetz zeta function in order that: (1) f has positive topological entropy when f is C-infinity, and (2) f has infinitely many periodic points when f is C-1 and f(M) subset of Int(M). Moreover, for the particular manifolds S-n, S-n x S-m CPn and HPn we improve the previous sufficient conditions.
引用
收藏
页码:1337 / 1347
页数:11
相关论文
共 50 条