TOPOLOGICAL ENTROPY AND PERIODS OF SELF MAPS ON COMPACT MANIFOLDS

被引:0
|
作者
Garcia Guirao, Juan Luis [1 ]
Llibre, Jaume [2 ]
机构
[1] Univ Politecn Cartagena, Hosp Marina, Dept Math Aplicada & Estadist, Cartagena 30203, Region De Murci, Spain
[2] Univ Autonoma Barcelona, Dept Math, E-08193 Barcelona, Catalonia, Spain
来源
HOUSTON JOURNAL OF MATHEMATICS | 2017年 / 43卷 / 04期
关键词
Compact manifold; topological entropy; discrete dynamical systems; Lefschetz numbers; Lefschetz zeta function; periodic point;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let (M, f) be a discrete dynamical system induced by a self-map f defined on a smooth compact connected n dimensional manifold M. We provide sufficient conditions in terms of the Lefschetz zeta function in order that: (1) f has positive topological entropy when f is C-infinity, and (2) f has infinitely many periodic points when f is C-1 and f(M) subset of Int(M). Moreover, for the particular manifolds S-n, S-n x S-m CPn and HPn we improve the previous sufficient conditions.
引用
收藏
页码:1337 / 1347
页数:11
相关论文
共 50 条
  • [1] Estimates of the topological entropy from below for continuous self-maps on some compact manifolds
    Marzantowicz, Waclaw
    Przytycki, Feliks
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2008, 21 (02) : 501 - 512
  • [2] Topological entropy and periods of graph maps
    Llibre, Jaume
    Saghin, Radu
    JOURNAL OF DIFFERENCE EQUATIONS AND APPLICATIONS, 2012, 18 (04) : 589 - 598
  • [3] Periods for transversal maps on compact manifolds with a given homology
    Llibre, J
    Paraños, J
    Rodríguez, JA
    HOUSTON JOURNAL OF MATHEMATICS, 1998, 24 (03): : 397 - 407
  • [4] On the properties of topological entropy on a compact family of maps
    Vetokhin, A. N.
    MATHEMATICAL NOTES, 2016, 99 (3-4) : 354 - 361
  • [5] On the properties of topological entropy on a compact family of maps
    A. N. Vetokhin
    Mathematical Notes, 2016, 99 : 354 - 361
  • [6] TOPOLOGICAL ENTROPY, SETS OF PERIODS, AND TRANSITIVITY FOR CIRCLE MAPS
    Alseda, Lluis
    Bordignon, Liane
    Groisman, Jorge
    UKRAINIAN MATHEMATICAL JOURNAL, 2024, : 31 - 50
  • [7] Topological entropy of compact subsystems of transitive real line maps
    Kwietniak, Dominik
    Ubik, Martha
    DYNAMICAL SYSTEMS-AN INTERNATIONAL JOURNAL, 2013, 28 (01): : 62 - 75
  • [8] SELF-MAPS ON FLAT MANIFOLDS WITH INFINITELY MANY PERIODS
    Liang, Zhibin
    Zhao, Xuezhi
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2012, 32 (06) : 2223 - 2232
  • [9] Topological entropy of continuous self-maps on a graph
    Juan Luis García Guirao
    Jaume Llibre
    Wei Gao
    Computational and Applied Mathematics, 2019, 38
  • [10] Topological entropy of continuous self-maps on a graph
    Garcia Guirao, Juan Luis
    Llibre, Jaume
    Gao, Wei
    COMPUTATIONAL & APPLIED MATHEMATICS, 2019, 38 (04):