An open mapping theorem for pro-Lie groups

被引:3
|
作者
Hofmann, Karl H. [2 ]
Morris, Sidney A. [1 ]
机构
[1] Univ Ballarat, Sch Informat Technol & Math Sci, Ballarat, Vic 3353, Australia
[2] Tech Univ Darmstadt, D-64289 Darmstadt, Germany
关键词
D O I
10.1017/S1446788700036387
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A pro-Lie group is a projective limit of finite dimensional Lie groups. It is proved that a surjective continuous group homomorphism between connected pro-Lie groups is open. In fact this remains true for almost connected pro-Lie groups where a topological group is called almost connected if the factor group modulo the identity component is compact. As consequences we get a Closed Graph Theorem and the validity of the Second Isomorphism Theorem for pro-Lie groups in the almost connected context.
引用
收藏
页码:55 / 77
页数:23
相关论文
共 50 条
  • [11] CONNECTED SUBGROUPS OF PRO-LIE GROUPS
    SCHEIDERER, C
    GEOMETRIAE DEDICATA, 1986, 21 (02) : 231 - 248
  • [12] The structure of abelian pro-Lie groups
    Hofmann, KH
    Morris, SA
    MATHEMATISCHE ZEITSCHRIFT, 2004, 248 (04) : 867 - 891
  • [13] The structure of abelian pro-Lie groups
    Karl H. Hofmann
    Sidney A. Morris
    Mathematische Zeitschrift, 2004, 248 : 867 - 891
  • [14] Pro-Lie groups which are infinite-dimensional Lie groups
    Hofmann, K. H.
    Neeb, K. -H.
    MATHEMATICAL PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 2009, 146 : 351 - 378
  • [15] Amenability and representation theory of pro-Lie groups
    Daniel Beltiţă
    Amel Zergane
    Mathematische Zeitschrift, 2017, 286 : 701 - 722
  • [16] Engel Marginal Subgroups in Pro-Lie Groups
    Bavuma, Yanga
    Russo, Francesco G.
    JOURNAL OF LIE THEORY, 2023, 33 (01) : 79 - 91
  • [17] The Structure of Almost Connected Pro-Lie Groups
    Hofmann, Karl H.
    Morris, Sidney A.
    JOURNAL OF LIE THEORY, 2011, 21 (02) : 347 - 383
  • [18] Amenability and representation theory of pro-Lie groups
    Beltita, Daniel
    Zergane, Amel
    MATHEMATISCHE ZEITSCHRIFT, 2017, 286 (1-2) : 701 - 722
  • [19] Pro-Lie groups approximable by discrete subgroups
    Hamrouni, Hatem
    Kadri, Bilel
    FORUM MATHEMATICUM, 2016, 28 (01) : 189 - 192
  • [20] Local splitting of locally compact groups and pro-Lie groups
    Hofmann, Karl H.
    Morris, Sidney A.
    JOURNAL OF GROUP THEORY, 2011, 14 (06) : 931 - 935