Quasi-Monte Carlo estimation in generalized linear mixed models

被引:21
|
作者
Pan, Jianxin
Thompson, Robin
机构
[1] Univ Manchester, Sch Math, Manchester M60 1QD, Lancs, England
[2] Rothamsted Res, Biomath & Bioinformat Div, Harpenden AL5 2JQ, Herts, England
关键词
generalized linear mixed models; high-dimensional integrals; maximum likelihood estimates; Quasi-Monte Carlo approximation; salamander data analysis;
D O I
10.1016/j.csda.2006.10.003
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Generalized linear mixed models (GLMMs) are useful for modelling longitudinal and clustered data, but parameter estimation is very challenging because the likelihood may involve high-dimensional integrals that are analytically intractable. Gauss-Hermite quadrature (GHQ) approximation can be applied but is only suitable for low-dimensional random effects. Based on the Quasi-Monte Carlo (QMC) approximation, a heuristic approach is proposed to calculate the maximum likelihood estimates of parameters in the GLMM. The QMC points scattered uniformly on the high-dimensional integration domain are generated to replace the GHQ nodes. Compared to the GHQ approximation, the proposed method has many advantages such as its affordable computation, good approximation and fast convergence. Comparisons to the penalized quasi-likelihood estimation and Gibbs sampling are made using a real dataset and a simulation study. The real dataset is the salamander mating dataset whose modelling involves six 20-dimensional intractable integrals in the likelihood. (C) 2006 Elsevier B.V. All rights reserved.
引用
收藏
页码:5765 / 5775
页数:11
相关论文
共 50 条
  • [1] Density Estimation by Monte Carlo and Quasi-Monte Carlo
    L'Ecuyer, Pierre
    Puchhammer, Florian
    [J]. MONTE CARLO AND QUASI-MONTE CARLO METHODS, MCQMC 2020, 2022, 387 : 3 - 21
  • [2] Monte Carlo, quasi-Monte Carlo, and randomized quasi-Monte Carlo
    Owen, AB
    [J]. MONTE CARLO AND QUASI-MONTE CARLO METHODS 1998, 2000, : 86 - 97
  • [3] Estimation of the mixed logit likelihood function by randomized quasi-Monte Carlo
    Munger, D.
    L'Ecuyer, P.
    Bastin, F.
    Cirillo, C.
    Tuffin, B.
    [J]. TRANSPORTATION RESEARCH PART B-METHODOLOGICAL, 2012, 46 (02) : 305 - 320
  • [4] RANDOMIZED QUASI-MONTE CARLO FOR QUANTILE ESTIMATION
    Kaplan, Zachary T.
    Li, Yajuan
    Nakayama, Marvin K.
    Tuffin, Bruno
    [J]. 2019 WINTER SIMULATION CONFERENCE (WSC), 2019, : 428 - 439
  • [5] Density Estimation by Randomized Quasi-Monte Carlo
    Abdellah, Amal Ben
    L'Ecuyer, Pierre
    Owen, Art B.
    Puchhammer, Florian
    [J]. SIAM-ASA JOURNAL ON UNCERTAINTY QUANTIFICATION, 2021, 9 (01): : 280 - 301
  • [6] Monte Carlo and Quasi-Monte Carlo Density Estimation via Conditioning
    L'Ecuyer, Pierre
    Puchhammer, Florian
    Ben Abdellah, Amal
    [J]. INFORMS JOURNAL ON COMPUTING, 2022, 34 (03) : 1729 - 1748
  • [7] Accuracy estimation for quasi-Monte Carlo simulations
    Snyder, WC
    [J]. MATHEMATICS AND COMPUTERS IN SIMULATION, 2000, 54 (1-3) : 131 - 143
  • [8] Randomized block quasi-Monte Carlo sampling for generalized likelihood uncertainty estimation
    Onyutha, Charles
    [J]. HYDROLOGY RESEARCH, 2024, 55 (03): : 319 - 335
  • [9] A MIXED MONTE CARLO AND QUASI-MONTE CARLO METHOD WITH APPLICATIONS TO MATHEMATICAL FINANCE
    Rosca, Alin, V
    [J]. STUDIA UNIVERSITATIS BABES-BOLYAI MATHEMATICA, 2008, 53 (04): : 57 - 76
  • [10] Monte Carlo and Quasi-Monte Carlo for Statistics
    Owen, Art B.
    [J]. MONTE CARLO AND QUASI-MONTE CARLO METHODS 2008, 2009, : 3 - 18