Monte Carlo and Quasi-Monte Carlo Density Estimation via Conditioning

被引:0
|
作者
L'Ecuyer, Pierre [1 ]
Puchhammer, Florian [1 ,2 ]
Ben Abdellah, Amal [1 ]
机构
[1] Univ Montreal, Dept Informat & Rech Operat, Montreal, PQ H3C 3J7, Canada
[2] Basque Ctr Appl Math, Bilbao 48009, Basque Country, Spain
基金
加拿大自然科学与工程研究理事会;
关键词
density estimation; conditional Monte Carlo; quasi-Monte Carlo; PERTURBATION ANALYSIS; VARIANCE REDUCTION; IPA;
D O I
10.1287/ijoc.2021.1135
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Estimating the unknown density from which a given independent sample originates is more difficult than estimating the mean in the sense that, for the best popular non-parametric density estimators, the mean integrated square error converges more slowly than at the canonical rate of O(1/n). When the sample is generated from a simulation model and we have control over how this is done, we can do better. We examine an approach in which conditional Monte Carlo yields, under certain conditions, a random conditional density that is an unbiased estimator of the true density at any point. By averaging independent replications, we obtain a density estimator that converges at a faster rate than the usual ones. Moreover, combining this new type of estimator with randomized quasi-Monte Carlo to generate the samples typically brings a larger improvement on the error and convergence rate than for the usual estimators because the new estimator is smoother as a function of the underlying uniformrandom numbers.
引用
收藏
页码:1729 / 1748
页数:20
相关论文
共 50 条
  • [1] Density Estimation by Monte Carlo and Quasi-Monte Carlo
    L'Ecuyer, Pierre
    Puchhammer, Florian
    [J]. MONTE CARLO AND QUASI-MONTE CARLO METHODS, MCQMC 2020, 2022, 387 : 3 - 21
  • [2] Monte Carlo, quasi-Monte Carlo, and randomized quasi-Monte Carlo
    Owen, AB
    [J]. MONTE CARLO AND QUASI-MONTE CARLO METHODS 1998, 2000, : 86 - 97
  • [3] Density Estimation by Randomized Quasi-Monte Carlo
    Abdellah, Amal Ben
    L'Ecuyer, Pierre
    Owen, Art B.
    Puchhammer, Florian
    [J]. SIAM-ASA JOURNAL ON UNCERTAINTY QUANTIFICATION, 2021, 9 (01): : 280 - 301
  • [4] QUANTILE ESTIMATION VIA A COMBINATION OF CONDITIONAL MONTE CARLO AND RANDOMIZED QUASI-MONTE CARLO
    Nakayama, Marvin K.
    Kaplan, Zachary T.
    Li, Yajuan
    Tuffin, Bruno
    L'Ecuyer, Pierre
    [J]. 2020 WINTER SIMULATION CONFERENCE (WSC), 2020, : 301 - 312
  • [5] Monte Carlo and Quasi-Monte Carlo for Statistics
    Owen, Art B.
    [J]. MONTE CARLO AND QUASI-MONTE CARLO METHODS 2008, 2009, : 3 - 18
  • [6] Monte Carlo extension of quasi-Monte Carlo
    Owen, AB
    [J]. 1998 WINTER SIMULATION CONFERENCE PROCEEDINGS, VOLS 1 AND 2, 1998, : 571 - 577
  • [7] On Monte Carlo and Quasi-Monte Carlo for Matrix Computations
    Alexandrov, Vassil
    Davila, Diego
    Esquivel-Flores, Oscar
    Karaivanova, Aneta
    Gurov, Todor
    Atanassov, Emanouil
    [J]. LARGE-SCALE SCIENTIFIC COMPUTING, LSSC 2017, 2018, 10665 : 249 - 257
  • [8] Monte Carlo and quasi-Monte Carlo methods - Preface
    Spanier, J
    Pengilly, JH
    [J]. MATHEMATICAL AND COMPUTER MODELLING, 1996, 23 (8-9) : R11 - R13
  • [9] RANDOMIZED QUASI-MONTE CARLO FOR QUANTILE ESTIMATION
    Kaplan, Zachary T.
    Li, Yajuan
    Nakayama, Marvin K.
    Tuffin, Bruno
    [J]. 2019 WINTER SIMULATION CONFERENCE (WSC), 2019, : 428 - 439
  • [10] Error in Monte Carlo, quasi-error in Quasi-Monte Carlo
    Kleiss, Ronald
    Lazopoulos, Achilleas
    [J]. COMPUTER PHYSICS COMMUNICATIONS, 2006, 175 (02) : 93 - 115