A unified framework for modelling wildlife population dynamics

被引:61
|
作者
Thomas, L [1 ]
Buckland, ST
Newman, KB
Harwood, J
机构
[1] Univ St Andrews, Ctr Rec Ecol & Environm Modelling, St Andrews KY16 9LZ, Fife, Scotland
[2] Univ St Andrews, The Observatory, Sch Math & Stat, St Andrews KY16 9LZ, Fife, Scotland
[3] Univ Idaho, Div Stat, Moscow, ID 83844 USA
[4] Univ St Andrews, Gatty Marine Lab, NERC, Sea Mammal Res Unit, St Andrews KY16 8LB, Fife, Scotland
[5] Univ St Andrews, Ctr Res Ecol & Environm Modelling, St Andrews KY16 8LB, Fife, Scotland
关键词
auxiliary particle filter; ecology; grey seals; Halichoerus grypus; metapopulation; nonlinear stochastic matrix models; sequential importance sampling; state-space models; wildlife conservation and management;
D O I
10.1111/j.1467-842X.2005.00369.x
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
This paper proposes a unified framework for defining and fitting stochastic, discrete-time, discrete-stage population dynamics models. The biological system is described by a state-space model, where the true but unknown state of the population is modelled by a state process, and this is linked to survey data by an observation process. All sources of uncertainty in the inputs, including uncertainty about model specification, are readily incorporated. The paper shows how the state process can be represented as a generalization of the standard Leslie or Lefkovitch matrix. By dividing the state process into subprocesses, complex models can be constructed from manageable building blocks. The paper illustrates the approach with a model of the British grey seal metapopulation, using sequential importance sampling with kernel smoothing to fit the model.
引用
收藏
页码:19 / 34
页数:16
相关论文
共 50 条
  • [41] A Unified Framework for the Infection Dynamics of Zoonotic Spillover and Spread
    Lo Iacono, Giovanni
    Cunningham, Andrew A.
    Fichet-Calvet, Elisabeth
    Garry, Robert F.
    Grant, Donald S.
    Leach, Melissa
    Moses, Lina M.
    Nichols, Gordon
    Schieffelin, John S.
    Shaffer, Jeffrey G.
    Webb, Colleen T.
    Wood, James L. N.
    PLOS NEGLECTED TROPICAL DISEASES, 2016, 10 (09):
  • [42] Modelling Population Dynamics for Archaeological Simulations
    Machalek, Tomas
    Olsevicova, Kamila
    Cimler, Richard
    PROCEEDINGS OF 30TH INTERNATIONAL CONFERENCE MATHEMATICAL METHODS IN ECONOMICS, PTS I AND II, 2012, : 536 - 539
  • [43] Challenges in modelling the dynamics of infectious diseases at the wildlife-human interface
    Roberts, Mick
    Dobson, Andrew
    Restif, Olivier
    Wells, Konstans
    EPIDEMICS, 2021, 37
  • [44] Modelling the Dynamics of an Aedes albopictus Population
    Basuki, Thomas Anung
    Cerone, Antonio
    Barbuti, Roberto
    Maggiolo-Schettini, Andrea
    Milazzo, Paolo
    Rossi, Elisabetta
    ELECTRONIC PROCEEDINGS IN THEORETICAL COMPUTER SCIENCE, 2010, (33): : 18 - 36
  • [45] Modelling social dynamics of a structured population
    Busoni, Giorgio
    Fasano, Antonio
    Mancini, Alberto
    Primicerio, Mario
    RENDICONTI LINCEI-MATEMATICA E APPLICAZIONI, 2011, 22 (03) : 365 - 385
  • [46] Problems of mathematical modelling of population dynamics
    Abakumov, AI
    ZHURNAL OBSHCHEI BIOLOGII, 2000, 61 (02): : 145 - 156
  • [47] Kinetic equations modelling population dynamics
    Arlotti, L
    Bellomo, N
    Lachowicz, M
    TRANSPORT THEORY AND STATISTICAL PHYSICS, 2000, 29 (1-2): : 125 - 139
  • [48] Unified Modelling and Verification of Vehicle Longitudinal/ Lateral/Vertical Dynamics
    Zhang L.
    Wu G.
    Wang Y.
    Jixie Gongcheng Xuebao/Journal of Mechanical Engineering, 2019, 55 (16): : 114 - 122
  • [49] A framework for adapting survey design through time for wildlife population assessment
    Fiona M. Underwood
    Environmental and Ecological Statistics, 2012, 19 : 413 - 436
  • [50] A framework for adapting survey design through time for wildlife population assessment
    Underwood, Fiona M.
    ENVIRONMENTAL AND ECOLOGICAL STATISTICS, 2012, 19 (03) : 413 - 436