A unified framework for modelling wildlife population dynamics

被引:61
|
作者
Thomas, L [1 ]
Buckland, ST
Newman, KB
Harwood, J
机构
[1] Univ St Andrews, Ctr Rec Ecol & Environm Modelling, St Andrews KY16 9LZ, Fife, Scotland
[2] Univ St Andrews, The Observatory, Sch Math & Stat, St Andrews KY16 9LZ, Fife, Scotland
[3] Univ Idaho, Div Stat, Moscow, ID 83844 USA
[4] Univ St Andrews, Gatty Marine Lab, NERC, Sea Mammal Res Unit, St Andrews KY16 8LB, Fife, Scotland
[5] Univ St Andrews, Ctr Res Ecol & Environm Modelling, St Andrews KY16 8LB, Fife, Scotland
关键词
auxiliary particle filter; ecology; grey seals; Halichoerus grypus; metapopulation; nonlinear stochastic matrix models; sequential importance sampling; state-space models; wildlife conservation and management;
D O I
10.1111/j.1467-842X.2005.00369.x
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
This paper proposes a unified framework for defining and fitting stochastic, discrete-time, discrete-stage population dynamics models. The biological system is described by a state-space model, where the true but unknown state of the population is modelled by a state process, and this is linked to survey data by an observation process. All sources of uncertainty in the inputs, including uncertainty about model specification, are readily incorporated. The paper shows how the state process can be represented as a generalization of the standard Leslie or Lefkovitch matrix. By dividing the state process into subprocesses, complex models can be constructed from manageable building blocks. The paper illustrates the approach with a model of the British grey seal metapopulation, using sequential importance sampling with kernel smoothing to fit the model.
引用
收藏
页码:19 / 34
页数:16
相关论文
共 50 条
  • [1] A UNIFIED MATHEMATICAL FRAMEWORK FOR POPULATION-DYNAMICS MODELING
    CLOUTMAN, DG
    CLOUTMAN, LD
    ECOLOGICAL MODELLING, 1994, 71 (1-3) : 131 - 160
  • [2] Pathogen population dynamics in agricultural landscapes: The Ddal modelling framework
    Papaix, Julien
    Adamczyk-Chauvat, Katarzyna
    Bouvier, Annie
    Kieu, Kien
    Touzeau, Suzanne
    Lannou, Christian
    Monod, Herve
    INFECTION GENETICS AND EVOLUTION, 2014, 27 : 509 - 520
  • [3] A Unified Framework for Opinion Dynamics
    Coates, Adam
    Han, Liangxiu
    Kleerekoper, Anthony
    PROCEEDINGS OF THE 17TH INTERNATIONAL CONFERENCE ON AUTONOMOUS AGENTS AND MULTIAGENT SYSTEMS (AAMAS' 18), 2018, : 1079 - 1086
  • [4] Wildlife Population Dynamics and Management Preface
    Hone, Jim
    WILDLIFE RESEARCH, 2009, 36 (01) : III - III
  • [5] Modelling with uncertainty: Introducing a probabilistic framework to predict animal population dynamics
    Holland, E. P.
    Burrow, J. F.
    Dytham, C.
    Aegerter, J. N.
    ECOLOGICAL MODELLING, 2009, 220 (9-10) : 1203 - 1217
  • [6] Dynamics of inductive inference in a unified framework
    Gilboa, Itzhak
    Samuelson, Larry
    Schmeidler, David
    JOURNAL OF ECONOMIC THEORY, 2013, 148 (04) : 1399 - 1432
  • [7] Unified modelling framework of flowslide triggering and runout
    Chen, Yanni
    Buscarnera, Giuseppe
    GEOTECHNIQUE, 2022, 74 (08): : 806 - 819
  • [8] TrajAgent: An Agent Framework for Unified Trajectory Modelling
    Department of Electronic Engineering, Tsinghua University, BNRist, Beijing, China
    arXiv,
  • [9] Metamodels for Transdisciplinary Analysis of Wildlife Population Dynamics
    Lacy, Robert C.
    Miller, Philip S.
    Nyhus, Philip J.
    Pollak, J. P.
    Raboy, Becky E.
    Zeigler, Sara L.
    PLOS ONE, 2013, 8 (12):
  • [10] Simulating the consequences of roads for wildlife population dynamics
    Barbosa, Priscilla
    Schumaker, Nathan H.
    Brandon, Kristin R.
    Bager, Alex
    Grilo, Clara
    LANDSCAPE AND URBAN PLANNING, 2020, 193