High-energy-density electron jet generation from an opening gold cone filled with near-critical-density plasma

被引:18
|
作者
Yu, T. P. [1 ]
Yu, W. [2 ]
Shao, F. Q. [1 ]
Luan, S. X. [2 ]
Zou, D. B. [1 ]
Ge, Z. Y. [1 ]
Zhang, G. B. [1 ]
Wang, J. W. [2 ]
Wang, W. Q. [1 ]
Li, X. H. [1 ]
Liu, J. X. [1 ]
Ouyang, J. M. [1 ]
Wong, A. Y. [3 ,4 ]
机构
[1] Natl Univ Def Technol, Coll Sci, Changsha 410073, Hunan, Peoples R China
[2] Chinese Acad Sci, Shanghai Inst Opt & Fine Mech, Shanghai 201800, Peoples R China
[3] Univ Calif Los Angeles, Dept Phys, Los Angeles, CA 90095 USA
[4] Nonlinear Ion Dynam LLC, Panorama City, CA 91402 USA
基金
中国国家自然科学基金;
关键词
LASERS; IGNITION; ACCELERATION; TARGETS; GAIN;
D O I
10.1063/1.4904420
中图分类号
O59 [应用物理学];
学科分类号
摘要
By using two-dimensional particle-in-cell simulations, we propose a scheme for strong coupling of a petawatt laser with an opening gold cone filled with near-critical-density plasmas. When relevant parameters are properly chosen, most laser energy can be fully deposited inside the cone with only 10% leaving the tip opening. Due to the asymmetric ponderomotive acceleration by the strongly decayed laser pulse, high-energy-density electrons with net laser energy gain are accumulated inside the cone, which then stream out of the tip opening continuously, like a jet. The jet electrons are fully relativistic, with speeds around 0: 98 - 0: 998 c and densities at 10(20)/cm(3) level. The jet can keep for a long time over 200 fs, which may have diverse applications in practice. (C) 2015 AIP Publishing LLC.
引用
收藏
页数:6
相关论文
共 50 条
  • [41] Sustainable production of high-energy-density jet fuel via cycloaddition reactions
    Yan-Cheng Hu
    Yingying Zhao
    Ning Li
    Jing-Pei Cao
    Journal of Energy Chemistry , 2024, (08) : 712 - 722
  • [42] Generation of attosecond electron bunches of tunable duration and density by relativistic vortex lasers in near-critical density plasma
    Zhang, W. Y.
    Hu, L. X.
    Cao, Y.
    Shao, F. Q.
    Yu, T. P.
    OPTICS EXPRESS, 2024, 32 (09): : 16398 - 16413
  • [43] High-Energy-Density Pinch Plasma: A Unique Nonconventional Tool for Plasma Nanotechnology
    Rawat, R. S.
    IEEE TRANSACTIONS ON PLASMA SCIENCE, 2013, 41 (04) : 701 - 715
  • [44] GENERATION AND STABILITY OF HIGH-CURRENT, HIGH-ENERGY-DENSITY ION RINGS
    LOVELACE, RV
    FLEISCHMANN, HH
    BULLETIN OF THE AMERICAN PHYSICAL SOCIETY, 1975, 20 (10): : 1347 - 1347
  • [45] Next-Generation, High-Energy-Density Redox Flow Batteries
    Huang, Qizhao
    Wang, Qing
    CHEMPLUSCHEM, 2015, 80 (02): : 312 - +
  • [46] The Generation of Intense-Relativistic-Microsecond Electron Beams From a High-Energy-Density Marx Generator With Waveform Modification
    Zhang, Huibo
    Zhou, Quan
    Yang, Hanwu
    Gao, Jingmin
    Zhang, Zicheng
    Ge, Xingjun
    IEEE TRANSACTIONS ON PLASMA SCIENCE, 2022, 50 (10) : 3668 - 3676
  • [47] Sustainable production of high-energy-density jet fuel via cycloaddition reactions
    Hu, Yan-Cheng
    Zhao, Yingying
    Li, Ning
    Cao, Jing-Pei
    JOURNAL OF ENERGY CHEMISTRY, 2024, 95 : 712 - 722
  • [48] High-energy-density plasma produced by pulsed high current discharge of powder
    Nozawa, H.
    Ishihara, H.
    Kawasaki, Y.
    Kuroda, J.
    Ibuka, S.
    Liu, Y.-S.
    Yasuoka, K.
    Ishii, S.
    2001, Japan Society of Applied Physics (40):
  • [49] Calculation of thermodynamic functions of aluminum plasma for high-energy-density systems
    V. V. Shumaev
    Physics of Atomic Nuclei, 2016, 79 : 1414 - 1418
  • [50] Calculation of Thermodynamic Functions of Aluminum Plasma for High-Energy-Density Systems
    Shumaev, V. V.
    PHYSICS OF ATOMIC NUCLEI, 2016, 79 (9-10) : 1414 - 1418