Geometry of quantum state space and quantum correlations

被引:6
|
作者
Deb, Prasenjit [1 ,2 ]
机构
[1] Bose Inst, Dept Phys, Kolkata 700091, India
[2] Bose Inst, Ctr Astroparticle Phys & Space Sci, Kolkata 700091, India
关键词
Quantum correlations; Negativity; Entanglement; Riemannian metrics; STATISTICAL DISTANCE; MONOTONE METRICS; BELL THEOREM; INFORMATION; CRYPTOGRAPHY; MECHANICS;
D O I
10.1007/s11128-015-1227-2
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Quantum state space is endowed with a metric structure, and Riemannian monotone metric is an important geometric entity defined on such a metric space. Riemannian monotone metrics are very useful for information-theoretic and statistical considerations on the quantum state space. In this article, considering the quantum state space being spanned by 2x2 density matrices, we determine a particular Riemannian metric for a state rho and show that if rho gets entangled with another quantum state, the negativity of the generated entangled state is, upto a constant factor, equal to square root of that particular Riemannian metric . Our result clearly relates a geometric quantity to a measure of entanglement. Moreover, the result establishes the possibility of understanding quantum correlations through geometric approach.
引用
下载
收藏
页码:1629 / 1638
页数:10
相关论文
共 50 条
  • [41] Noncommutative complex geometry of the quantum projective space
    Khalkhali, Masoud
    Moatadelro, Ali
    JOURNAL OF GEOMETRY AND PHYSICS, 2011, 61 (12) : 2436 - 2452
  • [42] Quantum geometry from phase space reduction
    Conrady, Florian
    Freidel, Laurent
    JOURNAL OF MATHEMATICAL PHYSICS, 2009, 50 (12)
  • [43] Geometric measure of quantum discord and total quantum correlations in an N-partite quantum state
    Hassan, Ali Saif M.
    Joag, Pramod S.
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2012, 45 (34)
  • [44] Mapping quantum geometry and quantum phase transitions to real space by a fidelity marker
    de Sousa, Matheus S. M.
    Cruz, Antonio L.
    Chen, Wei
    PHYSICAL REVIEW B, 2023, 107 (20)
  • [45] Quantum simulation of hyperbolic space with circuit quantum electrodynamics: From graphs to geometry
    Boettcher, Igor
    Bienias, Przemyslaw
    Belyansky, Ron
    Kollar, Alicia J.
    Gorshkov, Alexey V.
    PHYSICAL REVIEW A, 2020, 102 (03)
  • [46] Physics of gravitational interaction: Geometry of space or quantum field in space
    Baryshev, Yurij
    1st Crisis in Cosmology Conference, CCC-I, 2006, 822 : 144 - 147
  • [47] TOPICS FROM QUANTUM GEOMETRY - SUBSTRUCTURE OF SPINOR SPACE, GEODESICS AND QUANTUM OSCILLATORS
    CAIANIELLO, ER
    PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 1986, 137 (01): : 21 - 30
  • [48] Phase-Space Geometry and Optimal State Preparation in Quantum Metrology with Collective Spins
    Munoz-Arias, Manuel H.
    Deutsch, Ivan H.
    Poggi, Pablo M.
    PRX QUANTUM, 2023, 4 (02):
  • [49] Measuring Bipartite Quantum Correlations of an Unknown State
    Silva, I. A.
    Girolami, D.
    Auccaise, R.
    Sarthour, R. S.
    Oliveira, I. S.
    Bonagamba, T. J.
    deAzevedo, E. R.
    Soares-Pinto, D. O.
    Adesso, G.
    PHYSICAL REVIEW LETTERS, 2013, 110 (14)
  • [50] Ground state correlations of the quantum Toda lattice
    Matsuyama, A
    PHYSICS LETTERS A, 1997, 228 (1-2) : 79 - 83