Geometry of quantum state space and quantum correlations

被引:6
|
作者
Deb, Prasenjit [1 ,2 ]
机构
[1] Bose Inst, Dept Phys, Kolkata 700091, India
[2] Bose Inst, Ctr Astroparticle Phys & Space Sci, Kolkata 700091, India
关键词
Quantum correlations; Negativity; Entanglement; Riemannian metrics; STATISTICAL DISTANCE; MONOTONE METRICS; BELL THEOREM; INFORMATION; CRYPTOGRAPHY; MECHANICS;
D O I
10.1007/s11128-015-1227-2
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Quantum state space is endowed with a metric structure, and Riemannian monotone metric is an important geometric entity defined on such a metric space. Riemannian monotone metrics are very useful for information-theoretic and statistical considerations on the quantum state space. In this article, considering the quantum state space being spanned by 2x2 density matrices, we determine a particular Riemannian metric for a state rho and show that if rho gets entangled with another quantum state, the negativity of the generated entangled state is, upto a constant factor, equal to square root of that particular Riemannian metric . Our result clearly relates a geometric quantity to a measure of entanglement. Moreover, the result establishes the possibility of understanding quantum correlations through geometric approach.
引用
下载
收藏
页码:1629 / 1638
页数:10
相关论文
共 50 条
  • [1] Geometry of quantum state space and quantum correlations
    Prasenjit Deb
    Quantum Information Processing, 2016, 15 : 1629 - 1638
  • [2] Geometry of quantum correlations in space-time
    Zhao, Zhikuan
    Pisarczyk, Robert
    Thompson, Jayne
    Gu, Mile
    Vedral, Vlatko
    Fitzsimons, Joseph F.
    PHYSICAL REVIEW A, 2018, 98 (05)
  • [3] Geometry of quantum state space and entanglement
    Prasenjit Deb
    Pratapaditya Bej
    Quantum Information Processing, 2019, 18
  • [4] Geometry of quantum state space and entanglement
    Deb, Prasenjit
    Bej, Pratapaditya
    QUANTUM INFORMATION PROCESSING, 2019, 18 (03)
  • [5] Geometry of quantum correlations
    Pitowsky, Itamar
    PHYSICAL REVIEW A, 2008, 77 (06):
  • [6] QUANTUM-STATE SPACE METRIC AND CORRELATIONS
    ABE, S
    PHYSICAL REVIEW A, 1992, 46 (03): : 1667 - 1668
  • [7] Geometry of the set of quantum correlations
    Goh, Koon Tong
    Kaniewski, Jedrzej
    Wolfe, Elie
    Vertesi, Tamas
    Wu, Xingyao
    Cai, Yu
    Liang, Yeong-Cherng
    Scarani, Valerio
    PHYSICAL REVIEW A, 2018, 97 (02)
  • [8] Quantum brachistochrone problem and the geometry of the state space in pseudo-hermitian quantum mechanics
    Mostafazadeh, Ali
    PHYSICAL REVIEW LETTERS, 2007, 99 (13)
  • [10] Geometry of the set of synchronous quantum correlations
    Russell, Travis B.
    JOURNAL OF MATHEMATICAL PHYSICS, 2020, 61 (05)