Dynamic Label Propagation for Semi-supervised Multi-class Multi-label Classification

被引:87
|
作者
Wang, Bo [1 ,3 ]
Tu, Zhuowen [2 ]
Tsotsos, John K. [3 ]
机构
[1] Stanford Univ, Stanford, CA 94305 USA
[2] Univ Calif San Diego, San Diego, CA 92103 USA
[3] York Univ, Toronto, ON M3J 2R7, Canada
基金
美国国家科学基金会;
关键词
DIMENSIONALITY REDUCTION; DIFFUSION;
D O I
10.1109/ICCV.2013.60
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In graph-based semi-supervised learning approaches, the classification rate is highly dependent on the size of the availabel labeled data, as well as the accuracy of the similarity measures. Here, we propose a semi-supervised multi-class/multi-label classification scheme, dynamic label propagation (DLP), which performs transductive learning through propagation in a dynamic process. Existing semi-supervised classification methods often have difficulty in dealing with multi-class/multi-label problems due to the lack in consideration of label correlation; our algorithm instead emphasizes dynamic metric fusion with label information. Significant improvement over the state-of-the-art methods is observed on benchmark datasets for both multiclass and multi-label tasks.
引用
收藏
页码:425 / 432
页数:8
相关论文
共 50 条
  • [1] Dynamic label propagation for semi-supervised multi-class multi-label classification
    Wang, Bo
    Tsotsos, John
    [J]. PATTERN RECOGNITION, 2016, 52 : 75 - 84
  • [2] Semi-supervised imbalanced multi-label classification with label propagation
    Du, Guodong
    Zhang, Jia
    Zhang, Ning
    Wu, Hanrui
    Wu, Peiliang
    Li, Shaozi
    [J]. PATTERN RECOGNITION, 2024, 150
  • [3] Label Correlation Propagation for Semi-supervised Multi-label Learning
    Ghosh, Aritra
    Sekhar, C. Chandra
    [J]. PATTERN RECOGNITION AND MACHINE INTELLIGENCE, PREMI 2017, 2017, 10597 : 52 - 60
  • [4] Robust Multi-Label Semi-Supervised Classification
    Li, Sheng
    Fu, Yun
    [J]. 2017 IEEE INTERNATIONAL CONFERENCE ON BIG DATA (BIG DATA), 2017, : 27 - 36
  • [5] Semi-supervised multi-label classification using incomplete label information
    Tan, Qiaoyu
    Yu, Yanming
    Yu, Guoxian
    Wang, Jun
    [J]. NEUROCOMPUTING, 2017, 260 : 192 - 202
  • [6] Semi-Supervised Dimension Reduction for Multi-label Classification
    Qian, Buyue
    Davidson, Ian
    [J]. PROCEEDINGS OF THE TWENTY-FOURTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE (AAAI-10), 2010, : 569 - 574
  • [7] A survey of multi-label classification based on supervised and semi-supervised learning
    Han, Meng
    Wu, Hongxin
    Chen, Zhiqiang
    Li, Muhang
    Zhang, Xilong
    [J]. INTERNATIONAL JOURNAL OF MACHINE LEARNING AND CYBERNETICS, 2023, 14 (03) : 697 - 724
  • [8] A survey of multi-label classification based on supervised and semi-supervised learning
    Meng Han
    Hongxin Wu
    Zhiqiang Chen
    Muhang Li
    Xilong Zhang
    [J]. International Journal of Machine Learning and Cybernetics, 2023, 14 : 697 - 724
  • [9] Using Semi-Supervised Learning in Multi-label Classification Problems
    Santos, Araken M.
    Canuto, Anne M. P.
    [J]. 2012 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2012,
  • [10] Semi-supervised dual relation learning for multi-label classification
    Wang, Lichen
    Liu, Yunyu
    Di, Hang
    Qin, Can
    Sun, Gan
    Fu, Yun
    [J]. IEEE Transactions on Image Processing, 2021, 30 : 9125 - 9135