Causes of PM2.5 pollution in an air pollution transport channel city of northern China

被引:4
|
作者
Zhao, Xueyan [1 ,2 ]
Wang, Jing [1 ,2 ]
Xu, Bo [3 ]
Zhao, Ruojie [2 ]
Zhao, Guangjie [1 ]
Wang, Jian [2 ]
Ma, Yinhong [2 ]
Liang, Handong [1 ]
Li, Xianqing [1 ]
Yang, Wen [2 ]
机构
[1] China Univ Min & Technol Beijing, Coll Geosci & Surveying Engn, State Key Lab Coal Resources & Safe Min, Beijing 100083, Peoples R China
[2] Chinese Res Inst Environm Sci, Beijing 100012, Peoples R China
[3] Zibo Ecoenvironm Monitoring Ctr Shandong Prov, Zibo 255000, Peoples R China
基金
国家重点研发计划;
关键词
Secondary inorganic aerosols; Liquid water content; Formation mechanisms; Source apportionment; Heterogeneous reactions; PM2; 5; Pollution levels; TIANJIN-HEBEI REGION; YANGTZE-RIVER DELTA; SOURCE APPORTIONMENT; CHEMICAL-COMPOSITION; PARTICULATE MATTER; MASS CLOSURE; HAZE POLLUTION; FORMATION MECHANISMS; SEASONAL-VARIATIONS; EVOLUTION PROCESSES;
D O I
10.1007/s11356-021-17431-4
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
To develop effective mitigation policies, a comprehensive understanding of the evolution of the chemical composition, formation mechanisms, and the contribution of sources at different pollution levels is required. PM2.5 samples were collected for 1 year from August 2016 to August 2017 at an urban site in Zibo, then chemical compositions were analyzed. Secondary inorganic aerosols (SNA), anthropogenic minerals (MIN), and organic matter (OM) were the most abundant components of PM2.5, but only the mass fraction of SNA increased as the pollution evolved, implying that PM2.5 pollution was caused by the formation of secondary aerosols, especially nitrate. A more intense secondary transformation was found in the heating season (from November 15, 2016, to March 14, 2017), and a faster secondary conversion of nitrate than sulfate was discovered as the pollution level increased. The formation of sulfate was dominated by heterogeneous reactions. High relative humidity (RH) in polluted periods accelerated the formation of sulfate, and high temperature in the non-heating season also promoted the formation of sulfate. Zibo city was under ammonium-rich conditions during polluted periods in both seasons; therefore, nitrate was mainly formed through homogeneous reactions. The liquid water content increased significantly as the pollution levels increased when the RH was above 80%, indicating that the hygroscopic growth of aerosol aggravated the PM2.5 pollution. Source apportionment showed that PM2.5 was mainly from secondary aerosol formation, road dust, coal combustion, and vehicle emissions, contributing 36.6%, 16.5%, 14.7%, and 13.1% of PM2.5 mass, respectively. The contribution of secondary aerosol formation increased remarkably with the deterioration of air quality, especially in the heating season.
引用
收藏
页码:23994 / 24009
页数:16
相关论文
共 50 条
  • [31] Response of PM2.5 pollution to land use in China
    Lu, Debin
    Xu, Jianhua
    Yue, Wenze
    Mao, Wanliu
    Yang, Dongyang
    Wang, Jinzhu
    [J]. JOURNAL OF CLEANER PRODUCTION, 2020, 244
  • [32] Death Effects Assessment of PM2.5 Pollution in China
    Xie, Zhixiang
    Qin, Yaochen
    Zhang, Lijun
    Zhang, Rongrong
    [J]. POLISH JOURNAL OF ENVIRONMENTAL STUDIES, 2018, 27 (04): : 1813 - 1821
  • [33] Effect of PM2.5 pollution on perinatal mortality in China
    Guangqin Li
    Lingyu Li
    Dan Liu
    Jiahong Qin
    Hongjun Zhu
    [J]. Scientific Reports, 11
  • [34] Impacts of shipping emissions on PM2.5 pollution in China
    Lv, Zhaofeng
    Liu, Huan
    Ying, Qi
    Fu, Mingliang
    Meng, Zhihang
    Wang, Yue
    Wei, Wei
    Gong, Huiming
    He, Kebin
    [J]. ATMOSPHERIC CHEMISTRY AND PHYSICS, 2018, 18 (21) : 15811 - 15824
  • [35] Risks and Causes of Population Exposure to Cumulative Fine Particulate (PM2.5) Pollution in China
    Han, Lijian
    Zhou, Weiqi
    Pickett, Steward T. A.
    Li, Weifeng
    Qian, Yuguo
    [J]. EARTHS FUTURE, 2019, 7 (06) : 615 - 622
  • [36] Wavelet periodic and compositional characteristics of atmospheric PM2.5 in a typical air pollution event at Jinzhong city, China
    Dong, Yanping
    Zhou, Huan
    Fu, Yuling
    Li, Xiaolu
    Geng, Hong
    [J]. ATMOSPHERIC POLLUTION RESEARCH, 2021, 12 (02) : 245 - 254
  • [37] Process analysis of PM2.5 pollution events in a coastal city of China using CMAQ
    Qiang Zhang
    Di Xue
    Xiaohuan Liu
    Xiang Gong
    Huiwang Gao
    [J]. Journal of Environmental Sciences, 2019, (05) : 225 - 238
  • [38] A Modeling Study of a Typical Winter PM2.5 Pollution Episode in a City in Eastern China
    Gao, Lina
    Zhang, Renjian
    Han, Zhiwei
    Fu, Congbin
    Yan, Peng
    Wang, Tijian
    Hong, Shengmao
    Jiao, Li
    [J]. AEROSOL AND AIR QUALITY RESEARCH, 2014, 14 (01) : 311 - 322
  • [39] Process analysis of PM2.5 pollution events in a coastal city of China using CMAQ
    Zhang, Qiang
    Xue, Di
    Liu, Xiaohuan
    Gong, Xiang
    Gao, Huiwang
    [J]. JOURNAL OF ENVIRONMENTAL SCIENCES, 2019, 79 : 225 - 238
  • [40] Evaluation of PM2.5 air pollution sources and cardiovascular health
    Slawsky, Erik
    Ward-Caviness, Cavin K.
    Neas, Lucas
    Devlin, Robert B.
    Cascio, Wayne E.
    Russell, Armistead G.
    Huang, Ran
    Kraus, William E.
    Hauser, Elizabeth
    Diaz-Sanchez, David
    Weaver, Anne M.
    [J]. ENVIRONMENTAL EPIDEMIOLOGY, 2021, 5 (03)