Fe, B, and N Codoped Carbon Nanoribbons Derived from Heteroatom Polymers as High-Performance Oxygen Reduction Reaction Electrocatalysts for Zinc-Air Batteries

被引:17
|
作者
Lu, Yue [1 ]
Zou, Shanbao [1 ]
Li, Jiajie [1 ]
Li, Chenyu [1 ]
Liu, Xundao [1 ]
Dong, Dehua [1 ]
机构
[1] Univ Jinan, Sch Mat Sci & Engn, Jinan 250022, Peoples R China
基金
中国国家自然科学基金;
关键词
METAL-FREE ELECTROCATALYSTS; NITROGEN-DOPED GRAPHENE; POROUS CARBONS; EFFICIENT ELECTROCATALYSTS; CATALYST; BORON; NANOTUBES; ALKALINE; NANOFIBERS; CHALLENGES;
D O I
10.1021/acs.langmuir.1c02100
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
For zinc-air batteries, it is of great importance to heighten the oxygen reduction reaction (ORR) activity of cathode electrocatalysts. Herein, we synthesized carbon nanoribbons doped with Fe, B, and N as high-activity ORR electrocatalysts by a templating method. Benefiting from the melamine fiber (MF) and B doping, the as-prepared carbon nanoribbon has a high specific surface area, and the improved turnover frequency of Fe sites increases the ORR activity. The as-synthesized Fe-B-N-C electrocatalyst shows an improved half-wave potential and limited current density compared to Fe-N-C, B-N-C, and N-C. Moreover, zinc-air batteries with the Fe-B-N-C electrocatalyst exhibit a higher specific capacity and better long-term durability compared to those with commercial Pt/C. This work provides an effective strategy to synthesize noble-metal-free electrocatalysts for wide applications of zinc-air batteries.
引用
收藏
页码:13018 / 13026
页数:9
相关论文
共 50 条
  • [11] Advanced zinc-air batteries based on high-performance hybrid electrocatalysts
    Li, Yanguang
    Gong, Ming
    Liang, Yongye
    Feng, Ju
    Kim, Ji-Eun
    Wang, Hailiang
    Hong, Guosong
    Zhang, Bo
    Dai, Hongjie
    NATURE COMMUNICATIONS, 2013, 4
  • [12] Advanced zinc-air batteries based on high-performance hybrid electrocatalysts
    Yanguang Li
    Ming Gong
    Yongye Liang
    Ju Feng
    Ji-Eun Kim
    Hailiang Wang
    Guosong Hong
    Bo Zhang
    Hongjie Dai
    Nature Communications, 4
  • [13] Superior oxygen electrocatalysts derived from predesigned covalent organic polymers for zinc-air flow batteries
    Guo, Jianing
    Li, Tingting
    Wang, Qiuli
    Zhang, Ningyuan
    Cheng, Yuanhui
    Xiang, Zhonghua
    NANOSCALE, 2019, 11 (01) : 211 - 218
  • [14] B, N-doped ultrathin carbon nanosheet superstructure for high-performance oxygen reduction reaction in rechargeable zinc-air battery
    Zhao, Ruopeng
    Li, Qinghua
    Chen, Zhijing
    Jose, Vishal
    Jiang, Xian
    Fu, Gengtao
    Lee, Jong-Min
    Huang, Shaoming
    CARBON, 2020, 164 : 398 - 406
  • [15] Atomically Dispersed Mn within Carbon Frameworks as High-Performance Oxygen Reduction Electrocatalysts for Zinc-Air Battery
    Lin, Zhiyu
    Huang, Hao
    Cheng, Ling
    Yang, Yang
    Zhang, Ruirui
    Chen, Qianwang
    ACS SUSTAINABLE CHEMISTRY & ENGINEERING, 2020, 8 (01): : 427 - 434
  • [16] Bamboo derived N-doped carbon as a bifunctional electrode for high-performance zinc-air batteries
    Cui, Peng
    Li, Tingzhen
    Chi, Xiao
    Yang, Wu
    Chen, Zehong
    Han, Wenjia
    Xia, Ruidong
    Shimelis, Admassie
    Iwuoha, Emmanuel Iheanyichukwu
    Peng, Xinwen
    SUSTAINABLE ENERGY & FUELS, 2023, 7 (11) : 2717 - 2726
  • [17] Oxygen Engineering Enables N-Doped Porous Carbon Nanofibers as Oxygen Reduction/Evolution Reaction Electrocatalysts for Flexible Zinc-Air Batteries
    Qiang, Fuqiang
    Feng, Jianguang
    Wang, Huanlei
    Yu, Jianhua
    Shi, Jing
    Huang, Minghua
    Shi, Zhicheng
    Liu, Shuai
    Li, Ping
    Dong, Lifeng
    ACS CATALYSIS, 2022, 12 (07) : 4002 - 4015
  • [18] Atomically dispersed iron on nitrogen-decorated carbon for high-performance oxygen reduction and zinc-air batteries
    Shang, Ningzhao
    Wang, Chun
    Zhang, Xiaoyu
    Gao, Shutao
    Zhang, Shuaihua
    Meng, Tao
    Wang, Junmin
    Wang, Haijun
    Du, Congcong
    Shen, Tongde
    Huang, Jianyu
    Qiao, Yuqing
    Wu, Qiuhua
    Gao, Yongjun
    CHEMICAL ENGINEERING JOURNAL, 2021, 426
  • [19] Coordination polymer derived Fe-N-C electrocatalysts with high performance for the oxygen reduction reaction in Zn-air batteries
    Guo, Peng-Peng
    Xu, Chao
    Yang, Kun-Zu
    Lu, Chen
    Wei, Ping-Jie
    Ren, Qi-Zhi
    Liu, Jin-Gang
    DALTON TRANSACTIONS, 2024, 53 (17) : 7605 - 7610
  • [20] Fe, Cu-Coordinated ZIF-Derived Carbon Framework for Efficient Oxygen Reduction Reaction and Zinc-Air Batteries
    Wang, Zhihao
    Jin, Huihui
    Meng, Tian
    Liao, Ke
    Meng, Wenqian
    Yang, Jinlong
    He, Daping
    Xiong, Yuli
    Mu, Shichun
    ADVANCED FUNCTIONAL MATERIALS, 2018, 28 (39)