Support vector machine-based assessment of the T-wave morphology improves long QT syndrome diagnosis

被引:21
|
作者
Hermans, Ben J. M. [1 ,2 ,3 ]
Stoks, Job [1 ,2 ,4 ]
Bennis, Frank C. [1 ,5 ]
Vink, Arja S. [6 ]
Garde, Ainara [7 ]
Wilde, Arthur A. M. [6 ]
Pison, Laurent [3 ]
Postema, Pieter G. [6 ]
Delhaas, Tammo [1 ,2 ]
机构
[1] Maastricht Univ, Dept Biomed Engn, POB 616, NL-6200 MD Maastricht, Netherlands
[2] Maastricht Univ, Cardiovasc Res Inst Maastricht CARIM, POB 616, NL-6200 MD Maastricht, Netherlands
[3] Maastricht Univ, Med Ctr, Dept Cardiol, POB 5800, NL-6202 AZ Maastricht, Netherlands
[4] Univ Twente, MIRA Inst Biomed Technol & Tech Med, POB 217, NL-7500 AE Enschede, Netherlands
[5] Maastricht Univ, MHeNS Sch Mental Hlth & Neurosci, POB 616, NL-6200 MD Maastricht, Netherlands
[6] Acad Med Ctr, Heart Ctr, Dept Clin & Expt Cardiol, POB 22660, NL-1100 DD Amsterdam, Netherlands
[7] Univ Twente, Fac EEMCS, Dept Biomed Signals & Syst, POB 217, NL-7500 AE Enschede, Netherlands
来源
EUROPACE | 2018年 / 20卷
关键词
QT-interval; T-wave; Morphology; Long QT syndrome; Machine learning; INTERVAL; REGULARIZATION;
D O I
10.1093/europace/euy243
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
Aims Diagnosing long QT syndrome (LQTS) is challenging due to a considerable overlap of the QTc-interval between LQTS patients and healthy controls. The aim of this study was to investigate the added value of T-wave morphology markers obtained from 12-lead electrocardiograms (ECGs) in diagnosing LQTS in a large cohort of genepositive LQTS patients and gene-negative family members using a support vector machine. Methods and results A retrospective study was performed including 688 digital 12-lead ECGs recorded from genotype-positive LQTS patients and genotype-negative relatives at their first visit. Two models were trained and tested equally: a baseline model with age, gender, RR-interval, QT-interval, and QTc-intervals as inputs and an extended model including morphology features as well. The best performing baseline model showed an area under the receiver-operating characteristic curve (AUC) of 0.821, whereas the extended model showed an AUC of 0.901. Sensitivity and specificity at the maximal Youden's indexes changed from 0.694 and 0.829 with the baseline model to 0.820 and 0.861 with the extended model. Compared with clinically used QTc-interval cut-off values (> 480 ms), the extended model showed a major drop in false negative classifications of LQTS patients. Conclusion The support vector machine-based extended model with T-wave morphology markers resulted in a major rise in sensitivity and specificity at the maximal Youden's index. From this, it can be concluded that T-wave morphology assessment has an added value in the diagnosis of LQTS.
引用
收藏
页码:113 / 119
页数:7
相关论文
共 50 条
  • [1] T-wave morphology in the long QT-Syndrome
    Haarmark, Christian
    Graff, Claus
    Andersen, Made P.
    Hardahl, Thomas
    Struijk, Johannes J.
    Toft, Egon
    Christiansen, Michael
    Kanters, Jorgen K.
    CIRCULATION, 2007, 116 (16) : 390 - 390
  • [2] Improving long QT syndrome diagnosis by a polynomial-based T-wave morphology characterization
    Hermans, Ben J. M.
    Bennis, Frank C.
    Vink, Arja S.
    Koopsen, Tijmen
    Lyon, Aurore
    Wilde, Arthur A. M.
    Nuyens, Dieter
    Robyns, Tomas
    Pison, Laurent
    Postema, Pieter G.
    Delhaas, Tammo
    HEART RHYTHM, 2020, 17 (05) : 752 - 758
  • [3] Classification of the Long QT Syndrome based on discriminant analysis of T-wave morphology
    Struijk, JJ
    Kanters, JK
    Andersen, MP
    Hardahl, T
    Graff, C
    Christiansen, M
    Toft, E
    Computers in Cardiology 2005, Vol 32, 2005, 32 : 511 - 514
  • [4] T-Wave Morphology in Short QT Syndrome
    Anttonen, Olli
    Junttila, Juhani
    Giustetto, Carla
    Gaita, Fiorenzo
    Linna, Eeva
    Karsikas, Mari
    Seppanen, Tapio
    Perkiomaki, Juha S.
    Makikallio, Timo H.
    Brugada, Ramon
    Huikuri, Heikki V.
    ANNALS OF NONINVASIVE ELECTROCARDIOLOGY, 2009, 14 (03) : 262 - 267
  • [5] Classification of the long-QT syndrome based on discriminant analysis of T-wave morphology
    Struijk, J. J.
    Kanters, J. K.
    Andersen, M. P.
    Hardahl, T.
    Graff, C.
    Christiansen, M.
    Toft, E.
    MEDICAL & BIOLOGICAL ENGINEERING & COMPUTING, 2006, 44 (07) : 543 - 549
  • [6] Identifying long QT syndrome genotypes using T-wave morphology
    Kanters, JK
    Fanoe, S
    Larsen, LA
    Andersen, PS
    Thomsen, PEB
    Christiansen, M
    EUROPEAN HEART JOURNAL, 2001, 22 : 606 - 606
  • [7] Classification of the long-QT syndrome based on discriminant analysis of T-wave morphology
    J. J. Struijk
    J. K. Kanters
    M. P. Andersen
    T. Hardahl
    C. Graff
    M. Christiansen
    E. Toft
    Medical and Biological Engineering and Computing, 2006, 44 : 543 - 549
  • [8] T-wave alternans in long QT syndrome
    Gadage, Siddharth Narayan
    ANNALS OF PEDIATRIC CARDIOLOGY, 2018, 11 (02) : 219 - 221
  • [9] T-wave variability in the long QT syndrome
    Zienciuk, Agnieszka
    Potaz, Piotr
    Morzuch, Lucyna
    Kwiatkowska, Joanna
    KARDIOLOGIA POLSKA, 2008, 66 (09) : 995 - 998
  • [10] T-wave Alternans and Long QT Syndrome
    Isserman, Rebecca S.
    Simpao, Allan F.
    Schwartz, Alan Jay
    Pearsall, Matthew F.
    ANESTHESIOLOGY, 2017, 127 (03) : 567 - 567