CRISPR/Cas9 Genome Editing Using Gold-Nanoparticle-Mediated Laserporation

被引:19
|
作者
Bosnjak, Berislav [1 ]
Permanyer, Marc [1 ]
Sethi, Maya K. [1 ]
Galla, Melanie [2 ,3 ]
Maetzig, Tobias [2 ,3 ]
Heinemann, Dag [4 ,5 ]
Willenzon, Stefani [1 ]
Foerster, Reinhold [1 ,3 ,5 ]
Heisterkamp, Alexander [3 ,5 ,6 ]
Kalies, Stefan [3 ,5 ,6 ]
机构
[1] Hannover Med Sch, Inst Immunol, Carl Neuberg Str 1, D-30625 Hannover, Germany
[2] Hannover Med Sch, Inst Expt Hematol, Carl Neuberg Str 1, D-30625 Hannover, Germany
[3] Cluster Excellence REBIRTH, Carl Neuberg Str 1, D-30625 Hannover, Germany
[4] Laser Zentrum Hannover eV, Ind & Biomed Opt Dept, Hollerithallee 8, D-30419 Hannover, Germany
[5] Lower Saxony Ctr Biomed Engn Implant Res & Dev, Stadtfelddamm 34, D-30625 Hannover, Germany
[6] Leibniz Univ Hannover, Inst Quantenopt, Welfengarten 1, D-30167 Hannover, Germany
关键词
CRISPR/Cas9; gold nanoparticles; laser transfection; photothermal heating; plasmonics; HUMAN-CELLS; DELIVERY; GENERATION; SYSTEMS;
D O I
10.1002/adbi.201700184
中图分类号
TB3 [工程材料学]; R318.08 [生物材料学];
学科分类号
0805 ; 080501 ; 080502 ;
摘要
Engineered nucleases hold large potential for future gene therapy applications. An obstacle hampering their applications are delivery methods bearing efficiency, throughput, and viability of target cells. How this limitation can be overcome via gold-nanoparticle-mediated (GNOME) laserporation is demonstrated. It employs a picosecond laser setup and 200 nm gold nanoparticles, and its full capacity with CRISPR/Cas9 delivery is demonstrated. 70 kDa dextrans are utilized to probe delivery in adherent SC1 cells. Afterward, GNOME laserporation is used for transfection of crRNA:tracrRNA targeting the mouse CCR7 (mCCR7) into SpCas9 (Streptococcus pyogenes Cas9) and mCCR7 co-expressing SC1 cells. Finally, ribonucleoprotein particles consisting of mCCR7 crRNA:tracrRNA and SpCas9 endonuclease are transfected into SC1 cells not expressing SpCas9. Gene knockout efficiencies of up to 65% are detected in the GNOME laserporated cells. To validate the simplicity of the approach, the same treatment parameters are used to successfully knock out CXCR3 in 25% of GNOME laserporated activated mouse CD8(+) T cells. In conclusion, this is the first demonstration of the unique combination of nanotechnology and laser irradiation for gene editing via engineered nucleases.
引用
收藏
页数:5
相关论文
共 50 条
  • [1] Nanoparticle Delivery of CRISPR/Cas9 for Genome Editing
    Duan, Li
    Ouyang, Kan
    Xu, Xiao
    Xu, Limei
    Wen, Caining
    Zhou, Xiaoying
    Qin, Zhuan
    Xu, Zhiyi
    Sun, Wei
    Liang, Yujie
    FRONTIERS IN GENETICS, 2021, 12
  • [2] CRISPR/CAS9: THE GOLD STANDARD OF GENOME EDITING?
    Gleeson, Alfie
    Sawyer, Abigail
    BIOTECHNIQUES, 2018, 64 (06) : 239 - 244
  • [3] Genome editing with AAV using CRISPR/Cas9
    Wilson, J. M.
    HUMAN GENE THERAPY, 2016, 27 (11) : A18 - A18
  • [4] The CRISPR/Cas9 Genome Editing Revolution
    Renjie Jiao
    Caixia Gao
    Journal of Genetics and Genomics, 2016, 43 (05) : 227 - 228
  • [5] CRISPR/Cas9 genome editing in wheat
    Dongjin Kim
    Burcu Alptekin
    Hikmet Budak
    Functional & Integrative Genomics, 2018, 18 : 31 - 41
  • [6] CRISPR/Cas9 and Genome Editing in Drosophila
    Bassett, Andrew R.
    Liu, Ji-Long
    JOURNAL OF GENETICS AND GENOMICS, 2014, 41 (01) : 7 - 19
  • [7] CRISPR/Cas9 and Genome Editing in Drosophila
    Andrew R.Bassett
    Ji-Long Liu
    JournalofGeneticsandGenomics, 2014, 41 (01) : 7 - 19
  • [8] The CRISPR/Cas9 Genome Editing Revolution
    Jiao, Renjie
    Gao, Caixia
    JOURNAL OF GENETICS AND GENOMICS, 2016, 43 (05) : 227 - 228
  • [9] CRISPR/Cas9 genome editing in wheat
    Kim, Dongjin
    Alptekin, Burcu
    Budak, Hikmet
    FUNCTIONAL & INTEGRATIVE GENOMICS, 2018, 18 (01) : 31 - 41
  • [10] CRISPR/Cas9 in Genome Editing and Beyond
    Wang, Haifeng
    La Russa, Marie
    Qi, Lei S.
    ANNUAL REVIEW OF BIOCHEMISTRY, VOL 85, 2016, 85 : 227 - 264