L-Band Radar Scattering and Soil Moisture Retrieval of Wheat, Canola and Pasture Fields for SMAP Active Algorithms

被引:6
|
作者
Huang, Huanting [1 ]
Liao, Tien-Hao [2 ]
Kim, Seung-Bum [3 ]
Xu, Xiaolan [3 ]
Tsang, Leung [1 ]
Jackson, Thomas J. [4 ]
Yueh, Simon H. [3 ]
机构
[1] Univ Michigan, Dept Elect Engn & Comp Sci, Radiat Lab, Ann Arbor, MI 48109 USA
[2] CALTECH, Div Geol & Planetary Sci, Pasadena, CA 91125 USA
[3] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA
[4] ARS, USDA, Hydrol & Remote Sensing Lab, Beltsville, MD 20705 USA
基金
美国国家航空航天局;
关键词
BACKSCATTERING MODEL; MAXWELL EQUATIONS; CALIBRATION; SIMULATIONS; VEGETATION; LAYER;
D O I
10.2528/PIER21020702
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Wheat, canola, and pasture are three of the major vegetation types studied during the Soil Moisture Active Passive Validation Experiment 2012 (SMAPVEX12) conducted to support NASA's Soil Moisture Active Passive (SMAP) mission. The utilized model structure is integrated in the SMAP baseline active retrieval algorithm. Forward lookup tables (data-cubes) for VV and HH backscatters at L-band are developed for wheat and canola fields. The data-cubes have three axes: vegetation water content (VWC), root mean square (RMS) height of rough soil surface, and soil permittivity. The volume scattering and double-bounce scattering of the fields are calculated using the distorted Born approximation and the coherent reflectivity in the double-bounce scattering. The surface scattering is determined by the numerical solutions of Maxwell equations (NMM3D). The results of the data-cubes are validated with airborne radar measurements collected during SMAPVEX12 for ten wheat fields, five canola fields, and three pasture fields. The results show good agreement between the data-cube simulation and the airborne data. The root mean squared errors (RMSE) were 0.82 dB, 0.78 dB, and 1.62 dB for HH, and 0.97 dB, 1.30 dB, and 1.82 dB for VV of wheat, canola, and pasture fields, respectively. The data-cubes are next used to perform the time-series retrieval of the soil moisture. The RMSEs of the soil moisture retrieval are 0.043 cm(3)/cm(3), 0.082 cm(3)/cm(3), and 0.082 cm(3)/cm(3) for wheat, canola, and pasture fields, respectively. The results of this paper expand the scope of the SMAP baseline radar algorithm for wheat, canola, and pastures formed and provide a quantitative validation of its performance. It will also have applications for the upcoming NISAR (NASA-ISRO SAR Mission).
引用
收藏
页码:129 / 152
页数:24
相关论文
共 50 条
  • [21] A New Algorithm for Soil Moisture Retrieval With L-Band Radiometer
    Guo, Peng
    Shi, Jiancheng
    Liu, Qiang
    Du, Jinyang
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2013, 6 (03) : 1147 - 1155
  • [22] Circular polarization for L-band radiometric soil moisture retrieval
    De Roo, RD
    England, AW
    Munn, J
    2004 IEEE AEROSPACE CONFERENCE PROCEEDINGS, VOLS 1-6, 2004, : 1015 - 1023
  • [23] SOIL MOISTURE RETRIEVAL OVER AGRICULTURAL FIELDS FROM TIME SERIES MULTI-ANGULAR L-BAND RADAR DATA
    Zhu, Liujun
    Walker, Jeffrey P.
    Tsang, Leung
    Huang, Huanting
    Ye, Nan
    Rudiger, Christoph
    IGARSS 2018 - 2018 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2018, : 6139 - 6142
  • [24] Assessment of soil moisture effects on L-band radar interferometry
    Zwieback, Simon
    Hensley, Scott
    Hajnsek, Irena
    REMOTE SENSING OF ENVIRONMENT, 2015, 164 : 77 - 89
  • [25] Soil Moisture Active/Passive (SMAP) L-Band Microwave Radiometer Post-Launch Calibration Upgrade
    Peng, Jinzheng
    Misra, Sidharth
    Piepmeier, Jeffrey R.
    Dinnat, Emmanuel P.
    Yueh, Simon H.
    Meissner, Thomas
    Le Vine, David M.
    Shelton, Kacie E.
    Freedman, Adam P.
    Dunbar, R. Scott
    Chan, Steven K.
    Bindlish, Rajat
    De Amici, Giovanni
    Mohammed, Priscilla N.
    Hong, Liang
    Hudson, Derek
    Jackson, Thomas
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2019, 12 (06) : 1647 - 1657
  • [26] Modelling the passive microwave signature from land surfaces: A review of recent results and application to the L-band SMOS & SMAP soil moisture retrieval algorithms
    Wigneron, J. -P.
    Jackson, T. J.
    O'Neill, P.
    De Lannoy, G.
    de Rosnay, P.
    Walker, J. P.
    Ferrazzoli, P.
    Mironov, V.
    Bircher, S.
    Grant, J. P.
    Kurum, M.
    Schwank, M.
    Munoz-Sabater, J.
    Das, N.
    Royer, A.
    Al-Yaari, A.
    Al Bitar, A.
    Fernandez-Moran, R.
    Lawrence, H.
    Mialon, A.
    Parrens, M.
    Richaume, P.
    Delwart, S.
    Kerr, Y.
    REMOTE SENSING OF ENVIRONMENT, 2017, 192 : 238 - 262
  • [27] Effects of corn on C- and L-band radar backscatter: A correction method for soil moisture retrieval
    Joseph, A. T.
    van der Velde, R.
    O'Neill, P. E.
    Lang, R.
    Gish, T.
    REMOTE SENSING OF ENVIRONMENT, 2010, 114 (11) : 2417 - 2430
  • [28] Soil moisture retrieval using L-band radiometry: Dependence on soil type and moisture profiles
    Monerris, A.
    Vall-Ilossera, M.
    Camps, A.
    Sabia, R.
    Villarino, R.
    Cardona, M.
    Alvarez, E.
    Sosa, S.
    2006 IEEE MICRORAD, 2006, : 171 - +
  • [29] A Parameterized Surface Emission Model at L-Band for Soil Moisture Retrieval
    Chen, Liang
    Shi, Jiancheng
    Wigneron, Jean-Pierre
    Chen, Kun-Shan
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2010, 7 (01) : 127 - 130
  • [30] On the Retrieval of Soil Moisture in Wheat Fields From L-Band SAR Based on Water Cloud Modeling, the IEM, and Effective Roughness Parameters
    Lievens, Hans
    Verhoest, Niko E. C.
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2011, 8 (04) : 740 - 744