L-Band Radar Scattering and Soil Moisture Retrieval of Wheat, Canola and Pasture Fields for SMAP Active Algorithms

被引:6
|
作者
Huang, Huanting [1 ]
Liao, Tien-Hao [2 ]
Kim, Seung-Bum [3 ]
Xu, Xiaolan [3 ]
Tsang, Leung [1 ]
Jackson, Thomas J. [4 ]
Yueh, Simon H. [3 ]
机构
[1] Univ Michigan, Dept Elect Engn & Comp Sci, Radiat Lab, Ann Arbor, MI 48109 USA
[2] CALTECH, Div Geol & Planetary Sci, Pasadena, CA 91125 USA
[3] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA
[4] ARS, USDA, Hydrol & Remote Sensing Lab, Beltsville, MD 20705 USA
基金
美国国家航空航天局;
关键词
BACKSCATTERING MODEL; MAXWELL EQUATIONS; CALIBRATION; SIMULATIONS; VEGETATION; LAYER;
D O I
10.2528/PIER21020702
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Wheat, canola, and pasture are three of the major vegetation types studied during the Soil Moisture Active Passive Validation Experiment 2012 (SMAPVEX12) conducted to support NASA's Soil Moisture Active Passive (SMAP) mission. The utilized model structure is integrated in the SMAP baseline active retrieval algorithm. Forward lookup tables (data-cubes) for VV and HH backscatters at L-band are developed for wheat and canola fields. The data-cubes have three axes: vegetation water content (VWC), root mean square (RMS) height of rough soil surface, and soil permittivity. The volume scattering and double-bounce scattering of the fields are calculated using the distorted Born approximation and the coherent reflectivity in the double-bounce scattering. The surface scattering is determined by the numerical solutions of Maxwell equations (NMM3D). The results of the data-cubes are validated with airborne radar measurements collected during SMAPVEX12 for ten wheat fields, five canola fields, and three pasture fields. The results show good agreement between the data-cube simulation and the airborne data. The root mean squared errors (RMSE) were 0.82 dB, 0.78 dB, and 1.62 dB for HH, and 0.97 dB, 1.30 dB, and 1.82 dB for VV of wheat, canola, and pasture fields, respectively. The data-cubes are next used to perform the time-series retrieval of the soil moisture. The RMSEs of the soil moisture retrieval are 0.043 cm(3)/cm(3), 0.082 cm(3)/cm(3), and 0.082 cm(3)/cm(3) for wheat, canola, and pasture fields, respectively. The results of this paper expand the scope of the SMAP baseline radar algorithm for wheat, canola, and pastures formed and provide a quantitative validation of its performance. It will also have applications for the upcoming NISAR (NASA-ISRO SAR Mission).
引用
收藏
页码:129 / 152
页数:24
相关论文
共 50 条
  • [1] SOIL MOISTURE RETRIEVAL ONLY USING SMAP L-BAND RADAR OBSERVATIONS
    Yao, Panpan
    Lu, Hui
    Wang, Wenli
    Shao, Changkun
    Yang, Kun
    Gianotti, Daniel
    Liu, Zhuang
    Huang, Xiaomeng
    Entekhabi, Dara
    IGARSS 2020 - 2020 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2020, : 4586 - 4589
  • [2] Multitemporal retrieval of Soil Moisture from SMAP Radar Data at L-Band
    Fascetti, Fabio
    Pierdicca, Nazzareno
    Pulvirenti, Luca
    SAR IMAGE ANALYSIS, MODELING, AND TECHNIQUES XV, 2015, 9642
  • [3] The Soil Moisture Active Passive (SMAP) Mission L-Band Radar/Radiometer Instrument
    Spencer, Michael
    Wheeler, Kevin
    White, Chris
    West, Richard
    Piepmeier, Jeffrey
    Hudson, Derek
    Medeiros, James
    2010 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2010, : 3240 - 3243
  • [4] The Planned Soil Moisture Active Passive (SMAP) Mission L-Band Radar/Radiometer Instrument
    Spencer, Michael
    Wheeler, Kevin
    Chan, Samuel
    Piepmeier, Jeffrey
    Hudson, Derek
    Medeiros, James
    2011 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2011, : 2310 - 2313
  • [5] Soil Moisture Retrieval Using L-Band Radar Observations
    Narvekar, Parag S.
    Entekhabi, Dara
    Kim, Seung-Bum
    Njoku, Eni G.
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2015, 53 (06): : 3492 - 3506
  • [6] Synergistic Use of AirMOSS P-band SAR with the SMAP L-band Radar-Radiometer for Soil Moisture Retrieval
    Akbar, R.
    Chen, R.
    Tabatabaeenejad, A.
    Moghaddam, M.
    PROCEEDINGS OF THE 2016 INTERNATIONAL CONFERENCE ON ELECTROMAGNETICS IN ADVANCED APPLICATIONS (ICEAA), 2016, : 793 - 795
  • [7] L-Band Radar Soil Moisture Retrieval Without Ancillary Information
    Bruscantini, Cintia A.
    Konings, Alexandra G.
    Narvekar, Parag S.
    McColl, Kaighin A.
    Entekhabi, Dara
    Grings, Francisco M.
    Karszenbaum, Haydee
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2015, 8 (12) : 5526 - 5540
  • [8] Theoretical Study of Global Sensitivity Analysis of L-Band Radar Bistatic Scattering for Soil Moisture Retrieval
    Zeng, Jiangyuan
    Chen, Kun-Shan
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2018, 15 (11) : 1710 - 1714
  • [9] Passive Microwave Retrieval of Soil Moisture Below Snowpack at L-Band Using SMAP Observations
    Kumawat, Divya
    Olyaei, Mohammadali
    Gao, Lun
    Ebtehaj, Ardeshir
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2022, 60
  • [10] Surface soil moisture retrieval using L-band SMAP SAR data and its validation
    Kim, S.
    van Zyl, J.
    Johnson, J.
    Moghaddam, M.
    Tsang, L.
    Colliander, A.
    Dunbar, S.
    Jackson, T.
    Jaruwatanadilok, S.
    West, R.
    Berg, A.
    Caldwell, T.
    Cosh, M.
    Lopez-Baeza, E.
    Thibeault, M.
    Walker, J.
    Entekhabi, D.
    Yueh, S.
    2016 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2016, : 143 - 146