APPROXIMATION BY SPECIAL VALUES OF DIRICHLET SERIES

被引:0
|
作者
Celik, Sermin Cam [1 ]
Goral, Haydar [2 ]
机构
[1] Ozyegin Univ, Fac Engn, Dept Nat & Math Sci, TR-34794 Istanbul, Turkey
[2] Dokuz Eylul Univ, Fac Sci, Dept Math, Tinaztepe Campus, TR-35160 Izmir, Turkey
关键词
Dirichlet series; approximation; arithmetic progressions; ZETA-FUNCTION;
D O I
10.1090/proc/14715
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this note, we will show that real numbers can be strongly approximated by linear combinations of special values of Dirichlet series. We extend the approximation results of Emre Alkan in an effective way to all non-zero Dirichlet series with a better approximation. Using the fundamental works of Szemeredi and Green-Tao on arithmetic progressions, we prove that one can approximate real numbers with special values of Dirichlet series coming from sets of positive upper density or the set of prime numbers.
引用
收藏
页码:83 / 93
页数:11
相关论文
共 50 条