Abelian maps, brace blocks, and solutions to the Yang-Baxter equation

被引:7
|
作者
Koch, Alan [1 ]
机构
[1] Agnes Scott Coll, Dept Math, 141 E Coll Ave, Decatur, GA 30030 USA
关键词
Yang-Baxter equation; Skew left braces; Bi-skew braces; Abelian maps; POINT FREE ENDOMORPHISMS; SET-THEORETIC SOLUTIONS;
D O I
10.1016/j.jpaa.2022.107047
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let G be a finite nonabelian group. We show how an endomorphism of G with abelian image gives rise to a family of binary operations {o(n) : n is an element of Z(>= 0)} on G such that (G, o(m), o(n)) is a skew left brace for all m, n >= 0. A brace block gives rise to a number of non-degenerate set-theoretic solutions to the Yang-Baxter equation. We give examples showing that the number of solutions obtained can be arbitrarily large.(c) 2022 Elsevier B.V. All rights reserved.
引用
收藏
页数:15
相关论文
共 50 条
  • [21] COMMENT ON THE SOLUTIONS OF THE GRADED YANG-BAXTER EQUATION
    CHUNG, WS
    JOURNAL OF MATHEMATICAL PHYSICS, 1994, 35 (05) : 2485 - 2489
  • [22] Commuting solutions of the Yang-Baxter matrix equation
    Ding, J.
    Zhang, C.
    Rhee, N. H.
    APPLIED MATHEMATICS LETTERS, 2015, 44 : 1 - 4
  • [23] Knitting ansatz and solutions to Yang-Baxter equation
    Yan, H
    Zhang, J
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1996, 29 (16): : L413 - L418
  • [24] ON THE CONSTRUCTION OF TRIGONOMETRIC SOLUTIONS OF THE YANG-BAXTER EQUATION
    DELIUS, GW
    GOULD, MD
    ZHANG, YZ
    NUCLEAR PHYSICS B, 1994, 432 (1-2) : 377 - 403
  • [25] (In)decomposability of finite solutions of the Yang-Baxter equation
    Arpan Kanrar
    Archiv der Mathematik, 2024, 122 : 155 - 161
  • [26] NEW SOLUTIONS OF YANG-BAXTER EQUATION WITH SQUARE
    Atnagulova, R. A.
    Golubchik, I. Z.
    UFA MATHEMATICAL JOURNAL, 2012, 4 (03): : 6 - 16
  • [27] (In)decomposability of finite solutions of the Yang-Baxter equation
    Kanrar, Arpan
    ARCHIV DER MATHEMATIK, 2024, 122 (02) : 155 - 161
  • [28] New Elliptic Solutions of the Yang-Baxter Equation
    Chicherin, D.
    Derkachov, S. E.
    Spiridonov, V. P.
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2016, 345 (02) : 507 - 543
  • [29] QUANTUM SUPERGROUPS AND SOLUTIONS OF THE YANG-BAXTER EQUATION
    BRACKEN, AJ
    GOULD, MD
    ZHANG, RB
    MODERN PHYSICS LETTERS A, 1990, 5 (11) : 831 - 840
  • [30] MULTIPARAMETER DEPENDENT SOLUTIONS OF THE YANG-BAXTER EQUATION
    ZHANG, RB
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1991, 24 (10): : L535 - L543