Development and application of CRISPR-based genetic tools in Bacillus species and Bacillus phages

被引:8
|
作者
Song, Yafeng [1 ,2 ]
He, Siqi [1 ]
Jopkiewicz, Anita [1 ]
Setroikromo, Rita [1 ]
van Merkerk, Ronald [1 ]
Quax, Wim J. [1 ]
机构
[1] Univ Groningen, Groningen Res Inst Pharm, Dept Chem & Pharmaceut Biol, Antonius Deusinglaan 1,Bldg 3215,Room 917, NL-9713 AV Groningen, Netherlands
[2] Guangdong Acad Sci, Inst Microbiol, State Key Lab Appl Microbiol Southern China, Guangdong Prov Key Lab Microbial Culture Collect, Guangzhou, Peoples R China
关键词
Bacillus; Cas9; clustered regularly interspaced short palindromic repeats; Cpf1; genetic tools; phages; GENOME EDITING SYSTEM; ESCHERICHIA-COLI; SUBTILIS; CAS; RNA; DNA; RESISTANCE; PROTEINS; SEQUENCE; DELETION;
D O I
10.1111/jam.15704
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Recently, the clustered regularly interspaced short palindromic repeats (CRISPR) system has been developed into a precise and efficient genome editing tool. Since its discovery as an adaptive immune system in prokaryotes, it has been applied in many different research fields including biotechnology and medical sciences. The high demand for rapid, highly efficient and versatile genetic tools to thrive in bacteria-based cell factories accelerates this process. This review mainly focuses on significant advancements of the CRISPR system in Bacillus subtilis, including the achievements in gene editing, and on problems still remaining. Next, we comprehensively summarize this genetic tool's up-to-date development and utilization in other Bacillus species, including B. licheniformis, B. methanolicus, B. anthracis, B. cereus, B. smithii and B. thuringiensis. Furthermore, we describe the current application of CRISPR tools in phages to increase Bacillus hosts' resistance to virulent phages and phage genetic modification. Finally, we suggest potential strategies to further improve this advanced technique and provide insights into future directions of CRISPR technologies for rendering Bacillus species cell factories more effective and more powerful.
引用
收藏
页码:2280 / 2298
页数:19
相关论文
共 50 条
  • [21] Current and future prospects for CRISPR-based tools in bacteria
    Luo, Michelle L.
    Leenay, Ryan T.
    Beisel, Chase L.
    BIOTECHNOLOGY AND BIOENGINEERING, 2016, 113 (05) : 930 - 943
  • [22] Novel CRISPR-based detection of Leishmania species
    Duenas, Eva
    Nakamoto, Jose A.
    Cabrera-Sosa, Luis
    Huaihua, Percy
    Cruz, Maria
    Arevalo, Jorge
    Milon, Pohl
    Adaui, Vanessa
    FRONTIERS IN MICROBIOLOGY, 2022, 13
  • [23] Bacillus anthracis, Bacillus cereus, and Bacillus thuringiensis -: One species on the basis of genetic evidence
    Helgason, E
    Okstad, OA
    Caugant, DA
    Johansen, HA
    Fouet, A
    Mock, M
    Hegna, I
    Kolsto, AB
    APPLIED AND ENVIRONMENTAL MICROBIOLOGY, 2000, 66 (06) : 2627 - 2630
  • [24] Development and Application of CRISPR-Cas Based Tools
    Hu, Yanping
    Li, Wei
    FRONTIERS IN CELL AND DEVELOPMENTAL BIOLOGY, 2022, 10
  • [25] CRISPR-based genomic tools for the manipulation of genetically intractable microorganisms
    Rebecca S. Shapiro
    Alejandro Chavez
    James J. Collins
    Nature Reviews Microbiology, 2018, 16 : 333 - 339
  • [26] CRISPR-based genomic tools for the manipulation of genetically intractable microorganisms
    Shapiro, Rebecca S.
    Chavez, Alejandro
    Collins, James J.
    NATURE REVIEWS MICROBIOLOGY, 2018, 16 (06) : 333 - 339
  • [27] CRISPR-based tools for targeted transcriptional and epigenetic regulation in plants
    Lee, Joanne E.
    Neumann, Manuela
    Duro, Daniel Iglesias
    Schmid, Markus
    PLOS ONE, 2019, 14 (09):
  • [28] CRISPR-based genetic control strategies for insect pests
    Ying YAN
    Roswitha A. AUMANN
    Irina H?CKER
    Marc F. SCHETELIG
    Journal of Integrative Agriculture, 2023, 22 (03) : 651 - 668
  • [29] CRISPR-based genetic screens advance cancer immunology
    Cao, Yuanfang
    Li, Xueting
    Pan, Yumu
    Wang, Huahe
    Yang, Siyu
    Hong, Lingjuan
    Ye, Lupeng
    SCIENCE CHINA-LIFE SCIENCES, 2024, : 2554 - 2562
  • [30] CRISPR-based genetic screens advance cancer immunology
    Yuanfang Cao
    Xueting Li
    Yumu Pan
    Huahe Wang
    Siyu Yang
    Lingjuan Hong
    Lupeng Ye
    Science China(Life Sciences), 2024, 67 (12) : 2554 - 2562