Development and application of CRISPR-based genetic tools in Bacillus species and Bacillus phages

被引:8
|
作者
Song, Yafeng [1 ,2 ]
He, Siqi [1 ]
Jopkiewicz, Anita [1 ]
Setroikromo, Rita [1 ]
van Merkerk, Ronald [1 ]
Quax, Wim J. [1 ]
机构
[1] Univ Groningen, Groningen Res Inst Pharm, Dept Chem & Pharmaceut Biol, Antonius Deusinglaan 1,Bldg 3215,Room 917, NL-9713 AV Groningen, Netherlands
[2] Guangdong Acad Sci, Inst Microbiol, State Key Lab Appl Microbiol Southern China, Guangdong Prov Key Lab Microbial Culture Collect, Guangzhou, Peoples R China
关键词
Bacillus; Cas9; clustered regularly interspaced short palindromic repeats; Cpf1; genetic tools; phages; GENOME EDITING SYSTEM; ESCHERICHIA-COLI; SUBTILIS; CAS; RNA; DNA; RESISTANCE; PROTEINS; SEQUENCE; DELETION;
D O I
10.1111/jam.15704
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Recently, the clustered regularly interspaced short palindromic repeats (CRISPR) system has been developed into a precise and efficient genome editing tool. Since its discovery as an adaptive immune system in prokaryotes, it has been applied in many different research fields including biotechnology and medical sciences. The high demand for rapid, highly efficient and versatile genetic tools to thrive in bacteria-based cell factories accelerates this process. This review mainly focuses on significant advancements of the CRISPR system in Bacillus subtilis, including the achievements in gene editing, and on problems still remaining. Next, we comprehensively summarize this genetic tool's up-to-date development and utilization in other Bacillus species, including B. licheniformis, B. methanolicus, B. anthracis, B. cereus, B. smithii and B. thuringiensis. Furthermore, we describe the current application of CRISPR tools in phages to increase Bacillus hosts' resistance to virulent phages and phage genetic modification. Finally, we suggest potential strategies to further improve this advanced technique and provide insights into future directions of CRISPR technologies for rendering Bacillus species cell factories more effective and more powerful.
引用
收藏
页码:2280 / 2298
页数:19
相关论文
共 50 条
  • [1] Development and application of a fast and efficient CRISPR-based genetic toolkit in Bacillus amyloliquefaciens LB1ba02
    Xin, Qinglong
    Chen, Yudan
    Chen, Qianlin
    Wang, Bin
    Pan, Li
    MICROBIAL CELL FACTORIES, 2022, 21 (01)
  • [2] Development and application of a fast and efficient CRISPR-based genetic toolkit in Bacillus amyloliquefaciens LB1ba02
    Qinglong Xin
    Yudan Chen
    Qianlin Chen
    Bin Wang
    Li Pan
    Microbial Cell Factories, 21
  • [3] CRISPR-based tools for targeted genetic manipulation in pathogenic Sporothrix species
    Hatinguais, Remi
    Leaves, Ian
    Brown, Gordon D.
    Brown, Alistair J. P.
    Brock, Matthias
    da Silva, Roberta Peres
    MICROBIOLOGY SPECTRUM, 2023, 11 (05):
  • [4] CRISPR-based tools for targeted genetic manipulation in pathogenic Sporothrix species
    Hatinguais, Remi
    Leaves, Ian
    Brown, Gordon D.
    Brown, Alistair J. P.
    Brock, Matthias
    da Silva, Roberta Peres
    MICROBIOLOGY SPECTRUM, 2023,
  • [5] CRISPR-Based Tools in Immunity
    Simeonov, Dimitre R.
    Marson, Alexander
    ANNUAL REVIEW OF IMMUNOLOGY, VOL 37, 2019, 2019, 37 : 571 - 597
  • [6] A CRISPR-Cas9-Based Toolkit for Fast and Precise In Vivo Genetic Engineering of Bacillus subtilis Phages
    Schilling, Tobias
    Dietrich, Sascha
    Hoppert, Michael
    Hertel, Robert
    VIRUSES-BASEL, 2018, 10 (05):
  • [7] CRISPR-based engineering of phages for in situ bacterial base editing
    Nethery, Matthew A.
    Hidalgo-Cantabrana, Claudio
    Roberts, Avery
    Barrangou, Rodolphe
    PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2022, 119 (46)
  • [8] CRISPR-Based Tools for Fighting Rare Diseases
    Li, Qingyang
    Gao, Yanmin
    Wang, Haifeng
    LIFE-BASEL, 2022, 12 (12):
  • [9] CRISPR-based genetic diagnostics in microgravity
    Alon, Dan Mark
    Mittelman, Karin
    Stibbe, Eytan
    Countryman, Stefanie
    Stodieck, Louis
    Doraisingam, Shankini
    Martin, Dylan Mikeala Leal
    Hamo, Eliran Raphael
    Pines, Gur
    Burstein, David
    BIOSENSORS & BIOELECTRONICS, 2023, 237
  • [10] CRISPR-based mapping of genetic interactions
    Ross Cloney
    Nature Reviews Genetics, 2017, 18 : 272 - 272