Extreme ultraviolet photoemission of a tin-based photoresist

被引:21
|
作者
Zhang, Yu [1 ]
Haitjema, Jarich [1 ]
Castellanos, Sonia [1 ]
Lugier, Olivier [1 ]
Sadegh, Najmeh [1 ]
Ovsyannikov, Ruslan [2 ]
Giangrisostomi, Erika [2 ]
Johansson, Fredrik O. L. [3 ]
Berggren, Elin [3 ]
Lindblad, Andreas [3 ]
Brouwer, Albert M. [4 ,5 ]
机构
[1] Adv Res Ctr Nanolithog, Sci Pk 106, NL-1098 XG Amsterdam, Netherlands
[2] Helmholtz Zentrum Berlin BmbH, Inst Methods & Instrumentat Synchrotron Radiat Re, Albert Einstein Str 15, D-12489 Berlin, Germany
[3] Uppsala Univ, Dept Phys & Astron, Xray Photon Sci, Lagerhyddsvagen 1, S-75237 Uppsala, Sweden
[4] Adv Res Ctr Nanolithog, Sci Pk 110, NL-1098 XG Amsterdam, Netherlands
[5] Univ Amsterdam, vant Hoff Inst Mol Sci, Sci Pk 904, NL-1098 XH Amsterdam, Netherlands
基金
欧盟地平线“2020”; 瑞典研究理事会;
关键词
ENERGY-LEVEL ALIGNMENT; PHOTOELECTRON; SN; PHOTOABSORPTION; ORGANIC/METAL; WAVELENGTH; DIPOLE;
D O I
10.1063/5.0047269
中图分类号
O59 [应用物理学];
学科分类号
摘要
Tin is a suitable element for inclusion in extreme ultraviolet photoresists because of its relatively high-absorption cross section at 92eV. The electrons emitted after photon absorption are expected to generate secondary electrons in the solid film. In this way, several pathways lead to reactive species that cause a solubility switch. Here, we report the photoelectron spectra of tin oxo cage photoresists over the photon energy range 60-150eV, and the relative yields of photoelectrons from the valence band of the resist, from the Sn 4d orbitals, and of inelastically scattered electrons. The experimental excitation spectra differ considerably from those predicted by commonly used database cross section values, and from the combined computed subshell spectra: the maximum efficiency of ionization of Sn 4d both in the photoresists and in Sn metal occurs near the industrially relevant EUV wavelength of 13.5nm.
引用
收藏
页数:5
相关论文
共 50 条
  • [21] Tin-based antitumor drugs
    Gielen, M
    METAL IONS IN BIOLOGY AND MEDICINE, VOL 4, 1996, 4 : 12 - 14
  • [22] Stabilizing tin-based perovskites
    Shum, Kai
    Tsatskina, Anna
    NATURE ENERGY, 2016, 1
  • [23] Ultrafast extreme ultraviolet photoemission electron microscope
    Zheng, Wei
    Jiang, Pengzuo
    Zhang, Linfeng
    Wang, Yang
    Sun, Quan
    Liu, Yunquan
    Gong, Qihuang
    Wu, Chengyin
    REVIEW OF SCIENTIFIC INSTRUMENTS, 2021, 92 (04):
  • [24] PHOTOEMISSION PROCESSES IN GOLD AND ALUMINUM IN EXTREME ULTRAVIOLET
    MORSE, AL
    BULLETIN OF THE AMERICAN PHYSICAL SOCIETY, 1968, 13 (02): : 196 - &
  • [25] EXTREME ULTRAVIOLET PHOTOEMISSION OF MNSI, FESI AND COSI
    KAKIZAKI, A
    SUGAWARA, H
    NAGAKURA, I
    ISHIKAWA, Y
    KOMATSUBARA, T
    ISHII, T
    JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 1982, 51 (08) : 2597 - 2603
  • [26] EXTREME ULTRAVIOLET PHOTOEMISSION FROM CHROMIUM METAL
    SUGAWARA, H
    NAITO, K
    MIYA, T
    KAKIZAKI, A
    NAGAKURA, I
    ISHII, T
    JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 1984, 53 (01) : 279 - 283
  • [27] Photoresist Shrinkage Effects in 16 nm Node Extreme Ultraviolet (EUV) Photoresist Targets
    Bunday, Benjamin
    Montgomery, Cecilia
    Montgomery, Warren
    Cepler, Aron
    METROLOGY, INSPECTION, AND PROCESS CONTROL FOR MICROLITHOGRAPHY XXVII, 2013, 8681
  • [28] Verification of point-spread-function-based modeling of an extreme-ultraviolet photoresist
    Naulleau, PP
    APPLIED OPTICS, 2004, 43 (04) : 788 - 792
  • [29] Electrochemical lithiation of tin and tin-based intermetallics and composites
    Winter, M
    Besenhard, JO
    ELECTROCHIMICA ACTA, 1999, 45 (1-2) : 31 - 50
  • [30] Computational Study of Organotin Oxide Systems for Extreme Ultraviolet Photoresist
    Li, Jingbin
    Wang, Zhefeng
    Wang, Han
    JOURNAL OF PHYSICAL CHEMISTRY A, 2025, 129 (05): : 1420 - 1428