Melts of nonconcatenated rings in spherical confinement

被引:11
|
作者
Pachong, Stanard Mebwe [1 ]
Chubak, Iurii [2 ]
Kremer, Kurt [1 ]
Smrek, Jan [2 ]
机构
[1] Max Planck Inst Polymer Res, Ackermannweg 10, D-55128 Mainz, Germany
[2] Univ Vienna, Fac Phys, Boltzmanngasse 5, A-1090 Vienna, Austria
来源
JOURNAL OF CHEMICAL PHYSICS | 2020年 / 153卷 / 06期
基金
欧洲研究理事会; 美国国家科学基金会; 奥地利科学基金会;
关键词
TOPOLOGICAL CONSTRAINTS; POLYMER; DYNAMICS; CONFORMATIONS; RHEOLOGY; MODEL;
D O I
10.1063/5.0013929
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Motivated by the chromosomes enclosed in a cell nucleus, we study a spherically confined system of a small number of long unknotted and nonconcatenated polymer rings in a melt and systematically compare it with the bulk results. We find that universal scaling exponents of the bulk system also apply in the confined case; however, certain important differences arise. First, due to confinement effects, the static and threading properties of the rings depend on their radial position within the confining sphere. Second, the rings' dynamics is overall subdiffusive, but anisotropic along the directions parallel and perpendicular to the sphere's radius. The radial center of mass displacements of the rings are in general much smaller than the angular ones, which is caused by the confinement-induced inhomogeneous radial distribution of the whole rings within the sphere. Finally, we find enhanced contact times between rings as compared to the bulk, which indicates slow and predominantly coordinated pathways of the relaxation of the system.
引用
收藏
页数:12
相关论文
共 50 条
  • [31] PLASMA CONFINEMENT WITH SPHERICAL MULTIPOLE MAGNETIC FIELD
    SADOWSKI, M
    PHYSICS LETTERS A, 1967, A 25 (09) : 695 - &
  • [32] Buckling of an Epithelium Growing under Spherical Confinement
    Trushko, Anastasiya
    Di Meglio, Ilaria
    Merzouki, Aziza
    Blanch-Mercader, Carles
    Abuhattum, Shada
    Guck, Jochen
    Alessandri, Kevin
    Nassoy, Pierre
    Kruse, Karsten
    Chopard, Bastien
    Roux, Aurelien
    DEVELOPMENTAL CELL, 2020, 54 (05) : 655 - +
  • [33] Flexoelectric fluid membrane vesicles in spherical confinement
    Abtahi, Niloufar
    Bouzar, Lila
    Saidi-Amroun, Nadia
    Muller, Martin Michael
    EPL, 2020, 131 (01)
  • [34] Spherical Confinement of Chromonics: Effects of a Chiral Aminoacid
    Spina, Lorenza
    Ciuchi, Federica
    Tone, Caterina Maria
    Barberi, Riccardo
    De Santo, Maria Penelope
    NANOMATERIALS, 2022, 12 (04)
  • [35] A bipolaron in a spherical quantum dot with parabolic confinement
    Pokatilov, EP
    Fomin, VM
    Devreese, JT
    Balaban, SN
    Klimin, SN
    JOURNAL OF PHYSICS-CONDENSED MATTER, 1999, 11 (46) : 9033 - 9043
  • [36] Confinement and exhaust in the Mega Ampere Spherical Tokamak
    Counsell, GF
    Ahn, JW
    Akers, R
    Arends, E
    Buttery, R
    Field, AR
    Gryaznevich, M
    Helander, P
    Kirk, A
    Meyer, H
    Valovic, M
    Wilson, HR
    Yang, Y
    PLASMA PHYSICS AND CONTROLLED FUSION, 2002, 44 : B23 - B37
  • [37] Colloidal cholesteric liquid crystal in spherical confinement
    Yunfeng Li
    Jeffrey Jun-Yan Suen
    Elisabeth Prince
    Egor M. Larin
    Anna Klinkova
    Héloïse Thérien-Aubin
    Shoujun Zhu
    Bai Yang
    Amr S. Helmy
    Oleg D. Lavrentovich
    Eugenia Kumacheva
    Nature Communications, 7
  • [38] Aggregation of theta-polymers in spherical confinement
    Zierenberg, Johannes
    Mueller, Marco
    Schierz, Philipp
    Marenz, Martin
    Janke, Wolfhard
    JOURNAL OF CHEMICAL PHYSICS, 2014, 141 (11):
  • [39] Thermal confinement and transport in spherical tokamaks: a review
    Kaye, S. M.
    Connor, J. W.
    Roach, C. M.
    PLASMA PHYSICS AND CONTROLLED FUSION, 2021, 63 (12)
  • [40] Polymer ejection from strong spherical confinement
    Piili, J.
    Linna, R. P.
    PHYSICAL REVIEW E, 2015, 92 (06):