Special Weingarten surfaces foliated by circles

被引:19
|
作者
Lopez, Rafael [1 ]
机构
[1] Univ Granada, Dept Geometr & Topol, Granada 18071, Spain
来源
MONATSHEFTE FUR MATHEMATIK | 2008年 / 154卷 / 04期
关键词
cyclic surface; Weingarten surface; mean and Gauss curvature;
D O I
10.1007/s00605-008-0557-x
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper we study surfaces in Euclidean 3-space foliated by pieces of circles that satisfy a Weingarten condition of type aH + bK = c, where a,b and c are constant, and H and K denote the mean curvature and the Gauss curvature respectively. We prove that such a surface must be a surface of revolution, one of the Riemann minimal examples, or a generalized cone.
引用
收藏
页码:289 / 302
页数:14
相关论文
共 50 条
  • [31] Elliptic Linear Weingarten Surfaces
    Kim, Young Ho
    KYUNGPOOK MATHEMATICAL JOURNAL, 2018, 58 (03): : 547 - 557
  • [32] Computational Design of Weingarten Surfaces
    Pellis, Davide
    Kilian, Martin
    Pottmann, Helmut
    Pauly, Mark
    ACM TRANSACTIONS ON GRAPHICS, 2021, 40 (04):
  • [33] Willmore surfaces foliated by time-like pseudo circles discrete dynamical systems in R13
    Fan, Linyuan
    Ji, Dandan
    JOURNAL OF DIFFERENCE EQUATIONS AND APPLICATIONS, 2017, 23 (1-2) : 191 - 230
  • [34] ON A CLASS OF LINEAR WEINGARTEN SURFACES
    Pulov, Vladimir I.
    Hadzhilazova, Mariana Ts.
    Mladenov, Ivailo M.
    PROCEEDINGS OF THE NINETEENTH INTERNATIONAL CONFERENCE ON GEOMETRY, INTEGRABILITY AND QUANTIZATION, 2018, : 168 - 187
  • [35] Linear Weingarten Surfaces in ℝ3
    J. A. Gálvez
    A. Martínez
    F. Milán
    Monatshefte für Mathematik, 2003, 138 : 133 - 144
  • [36] Potential applications Weingarten surfaces in CAGD .1. Weingarten surfaces and surface shape investigation
    vanBrunt, B
    Grant, K
    COMPUTER AIDED GEOMETRIC DESIGN, 1996, 13 (06) : 569 - 582
  • [37] Weingarten and Linear Weingarten Type Tubular Surfaces in E3
    Tuncer, Yilmaz
    Yoon, Dae Won
    Karacan, Murat Kemal
    MATHEMATICAL PROBLEMS IN ENGINEERING, 2011, 2011
  • [38] Birational symmetries of foliated surfaces
    Cantat, S
    Favre, C
    JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2003, 561 : 199 - 235
  • [39] On birational boundedness of foliated surfaces
    Hacon, Christopher D.
    Langer, Adrian
    JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2021, 770 : 205 - 229
  • [40] ISOPERIMETRIC AND WEINGARTEN SURFACES IN THE SCHWARZSCHILD MANIFOLD
    Brendle, Simon
    Eichmair, Michael
    JOURNAL OF DIFFERENTIAL GEOMETRY, 2013, 94 (03) : 387 - 407