Dark-field imaging with cylindrical-vector beams

被引:156
|
作者
Biss, DP [1 ]
Youngworth, KS [1 ]
Brown, TG [1 ]
机构
[1] Univ Rochester, Inst Opt, Rochester, NY 14627 USA
关键词
D O I
10.1364/AO.45.000470
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Dark-field illumination provides an imaging mode that rejects specular light, thereby highlighting edge features. We analyze dark-field imaging by using cylindrical vector beam illumination with a confocal microscope equipped with a microstructure fiber mode filter. A numerical model based on rigorous coupled-wave analysis has been used to analyze the method. We acquired images of separated edges features to investigate the edge separation resolution of the method. A through-focus comparison of azimuthal and radial polarization shows a measurable dependence of edge separation on polarization. (c) 2006 Optical Society of America.
引用
收藏
页码:470 / 479
页数:10
相关论文
共 50 条
  • [41] Dark-Field Imaging: Recent developments and potential clinical applications
    Ando, Masami
    Sunaguchi, Naoki
    Shimao, Daisuke
    Pan, Adam
    Yuasa, Tetsuya
    Mori, Kensaku
    Suzuki, Yoshifumi
    Jin, Ge
    Kim, Jong-Ki
    Lim, Jae-Hong
    Seo, Seung-Jun
    Ichihara, Shu
    Ohura, Norihiko
    Gupta, Rajiv
    PHYSICA MEDICA-EUROPEAN JOURNAL OF MEDICAL PHYSICS, 2016, 32 (12): : 1801 - 1812
  • [42] Energy weighted x-ray dark-field imaging
    Pelzer, Georg
    Zang, Andrea
    Anton, Gisela
    Bayer, Florian
    Horn, Florian
    Kraus, Manuel
    Rieger, Jens
    Ritter, Andre
    Wandner, Johannes
    Weber, Thomas
    Fauler, Alex
    Fiederle, Michael
    Wong, Winnie S.
    Campbell, Michael
    Meiser, Jan
    Meyer, Pascal
    Mohr, Juergen
    Michel, Thilo
    OPTICS EXPRESS, 2014, 22 (20): : 24507 - 24515
  • [43] Numerical dark-field imaging using deep-learning
    Meng, Zhang
    Ding, Liqi
    Feng, Shaotong
    Xing, FangJian
    Nie, Shouping
    Ma, Jun
    Pedrini, Giancarlo
    Yuan, Caojin
    OPTICS EXPRESS, 2020, 28 (23): : 34266 - 34278
  • [44] Automated bacterial identification by angle resolved dark-field imaging
    Wilson, Benjamin K.
    Vigil, Genevieve D.
    BIOMEDICAL OPTICS EXPRESS, 2013, 4 (09): : 1692 - 1701
  • [45] Dark-field imaging of the in vitro corrosion of biodegradable magnesium screws
    Senck, Sascha
    Glinz, Jonathan
    Salaberger, Daniel
    Heupl, Sarah
    Kastner, Johann
    Trieb, Klemens
    Koutny, Daniel
    Gneiger, Stefan
    e-Journal of Nondestructive Testing, 2024, 29 (03):
  • [46] Quantitative Neutron Dark-Field Imaging of Milk: A Feasibility Study
    Kim, Youngju
    Valsecchi, Jacopo
    Oh, Ohsung
    Kim, Jongyul
    Lee, Seung Wook
    Boue, Francois
    Lutton, Evelyne
    Busi, Matteo
    Garvey, Christopher
    Strobl, Markus
    APPLIED SCIENCES-BASEL, 2022, 12 (02):
  • [47] Signal decomposition for X-ray dark-field imaging
    Pattern Recognition Lab, Friedrich-Alexander-University Erlangen-Nuremberg, Erlangen, Germany
    不详
    不详
    Kaeppler, Sebastian, 1600, Springer Verlag (8673):
  • [48] Structured dark-field imaging for single nano-particles
    陈健
    高昆
    王志立
    云文兵
    吴自玉
    Chinese Physics B, 2015, (08) : 497 - 500
  • [49] Scattering Imaging of Single Quantum Dots with Dark-Field Microscopy
    Bu, Xiaobing
    Chen, Huaping
    Gai, Hongwei
    Yang, Ronghua
    Yeung, Edward S.
    ANALYTICAL CHEMISTRY, 2009, 81 (17) : 7507 - 7509
  • [50] RESOLUTION AND OPTIMUM CONDITIONS FOR DARK-FIELD STEM AND CTEM IMAGING
    HAMMEL, M
    ROSE, H
    ULTRAMICROSCOPY, 1993, 49 (1-4) : 81 - 86