Statistical modeling approach for detecting generalized synchronization

被引:16
|
作者
Schumacher, Johannes [1 ,2 ,3 ,4 ]
Haslinger, Robert [1 ,2 ,3 ,4 ]
Pipa, Gordon [1 ,2 ,3 ,4 ]
机构
[1] Univ Osnabruck, Inst Cognit Sci, D-4500 Osnabruck, Germany
[2] MIT, Dept Brain & Cognit Sci, Cambridge, MA 02139 USA
[3] Massachusetts Gen Hosp, Charlestown, MA USA
[4] Frankfurt Inst Adv Studies, Frankfurt, Germany
来源
PHYSICAL REVIEW E | 2012年 / 85卷 / 05期
关键词
PHASE; CHAOS;
D O I
10.1103/PhysRevE.85.056215
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
Detecting nonlinear correlations between time series presents a hard problem for data analysis. We present a generative statistical modeling method for detecting nonlinear generalized synchronization. Truncated Volterra series are used to approximate functional interactions. The Volterra kernels are modeled as linear combinations of basis splines, whose coefficients are estimated via l(1) and l(2) regularized maximum likelihood regression. The regularization manages the high number of kernel coefficients and allows feature selection strategies yielding sparse models. The method's performance is evaluated on different coupled chaotic systems in various synchronization regimes and analytical results for detecting m : n phase synchrony are presented. Experimental applicability is demonstrated by detecting nonlinear interactions between neuronal local field potentials recorded in different parts of macaque visual cortex.
引用
收藏
页数:7
相关论文
共 50 条
  • [21] Generalized approach to statistical recognition of automata
    A. S. Barashko
    A. N. Pavliv
    Cybernetics and Systems Analysis, 1998, 34 : 39 - 46
  • [22] STATISTICAL APPROACH TO DETECTING FLAWS IN THE PRESENCE OF NOISE
    ELSLEY, RK
    FERTIG, KW
    RICHARDSON, JM
    LINEBARGER, RS
    IEEE TRANSACTIONS ON SONICS AND ULTRASONICS, 1985, 32 (01): : 94 - 94
  • [23] Statistical approach to detecting maternal genetic effects
    Tanita Casci
    Nature Reviews Genetics, 2012, 13 (4) : 223 - 223
  • [24] STATISTICAL MODELING - THE LIKELIHOOD APPROACH
    AITKIN, M
    STATISTICIAN, 1986, 35 (02): : 103 - 113
  • [25] Synchronization of the generalized Lorenz systems via observer approach
    Chen, YH
    Huang, XY
    DYNAMICS OF CONTINUOUS DISCRETE AND IMPULSIVE SYSTEMS-SERIES B-APPLICATIONS & ALGORITHMS, 2005, 2 : 484 - 487
  • [26] Cliques and colorings in generalized Paley graphs and an approach to synchronization
    Schneider, Csaba
    Silva, Ana C.
    JOURNAL OF ALGEBRA AND ITS APPLICATIONS, 2015, 14 (06)
  • [27] A receiver design approach to generalized synchronization on a linear manifold
    Cincotti, S
    Teglio, A
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2004, 14 (07): : 2493 - 2502
  • [28] Synchronization of chaotic systems:: A generalized Hamiltonian systems approach
    Sira-Ramírez, H
    Cruz-Hernández, C
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2001, 11 (05): : 1381 - 1395
  • [29] Synchronization-based approach for detecting functional activation of brain
    Hong, Lei
    Cai, Shi-Min
    Zhang, Jie
    Zhuo, Zhao
    Fu, Zhong-Qian
    Zhou, Pei-Ling
    CHAOS, 2012, 22 (03)
  • [30] GENERALIZED STATISTICAL APPROACH TO THE STUDY OF INTERATOMIC INTERACTIONS
    SANTAMARIA, R
    BERRONDO, M
    NOVARO, O
    KRYACHKO, ES
    INTERNATIONAL JOURNAL OF QUANTUM CHEMISTRY, 1989, 35 (02) : 267 - 275