Statistical modeling approach for detecting generalized synchronization

被引:16
|
作者
Schumacher, Johannes [1 ,2 ,3 ,4 ]
Haslinger, Robert [1 ,2 ,3 ,4 ]
Pipa, Gordon [1 ,2 ,3 ,4 ]
机构
[1] Univ Osnabruck, Inst Cognit Sci, D-4500 Osnabruck, Germany
[2] MIT, Dept Brain & Cognit Sci, Cambridge, MA 02139 USA
[3] Massachusetts Gen Hosp, Charlestown, MA USA
[4] Frankfurt Inst Adv Studies, Frankfurt, Germany
来源
PHYSICAL REVIEW E | 2012年 / 85卷 / 05期
关键词
PHASE; CHAOS;
D O I
10.1103/PhysRevE.85.056215
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
Detecting nonlinear correlations between time series presents a hard problem for data analysis. We present a generative statistical modeling method for detecting nonlinear generalized synchronization. Truncated Volterra series are used to approximate functional interactions. The Volterra kernels are modeled as linear combinations of basis splines, whose coefficients are estimated via l(1) and l(2) regularized maximum likelihood regression. The regularization manages the high number of kernel coefficients and allows feature selection strategies yielding sparse models. The method's performance is evaluated on different coupled chaotic systems in various synchronization regimes and analytical results for detecting m : n phase synchrony are presented. Experimental applicability is demonstrated by detecting nonlinear interactions between neuronal local field potentials recorded in different parts of macaque visual cortex.
引用
收藏
页数:7
相关论文
共 50 条
  • [1] Detecting generalized synchronization
    Parlitz, Ulrich
    IEICE NONLINEAR THEORY AND ITS APPLICATIONS, 2012, 3 (02): : 113 - 127
  • [2] Detecting generalized synchronization by the generalized angle
    Liu, Zonghua
    Zhou, Jie
    Munakata, Toyonori
    EPL, 2009, 87 (05)
  • [3] Detecting generalized synchronization between chaotic signals: a kernel-based approach
    Suetani, Hiromichi
    Iba, Yukito
    Aihara, Kazuyuki
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2006, 39 (34): : 10723 - 10742
  • [4] A generalized statistical approach for modeling fiber-reinforced materials
    Alessio Gizzi
    Anna Pandolfi
    Marcello Vasta
    Journal of Engineering Mathematics, 2018, 109 : 211 - 226
  • [5] A generalized statistical approach for modeling fiber-reinforced materials
    Gizzi, Alessio
    Pandolfi, Anna
    Vasta, Marcello
    JOURNAL OF ENGINEERING MATHEMATICS, 2018, 109 (01) : 211 - 226
  • [6] Detecting changes in green and blue spaces: Modeling based on statistical approach
    Noszczyk, Tomasz
    ECOLOGICAL INDICATORS, 2023, 154
  • [7] Generalized projective synchronization of chaos: The cascade synchronization approach
    Li, Changpin
    Yan, Jianping
    CHAOS SOLITONS & FRACTALS, 2006, 30 (01) : 140 - 146
  • [8] Generalized synchronization: A modified system approach
    Hramov, AE
    Koronovskii, AA
    PHYSICAL REVIEW E, 2005, 71 (06):
  • [9] A statistical method of detecting synchronization for cardio-music synchrogram
    Kusunoki, Y
    Fukumoto, M
    Nagashima, T
    IEICE TRANSACTIONS ON FUNDAMENTALS OF ELECTRONICS COMMUNICATIONS AND COMPUTER SCIENCES, 2003, E86A (09): : 2241 - 2247
  • [10] Detecting chaotic drive-response geometry in generalized synchronization
    Pecora, LM
    Carroll, TL
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2000, 10 (04): : 875 - 889