Large convex hull problems

被引:0
|
作者
Avis, D
Bremner, D
机构
关键词
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Every convex polytope has both a vertex and a halfspace description. The complexity of translating from the vertices to the halfspaces (convex hull) or vice versa (vertex enumeration) remains an important open problem in computational geometry. In this note we present families of hard polytopes for algorithms using pivoting, constraint insertion, and triangulation, and discuss techniques for estimating the difficulty of a convex hull or vertex enumeration instance.
引用
收藏
页码:179 / 182
页数:4
相关论文
共 50 条
  • [31] An Efficient Algorithm of Convex Hull for Very Large Planar Point Set
    Fan, Guangquan
    Ma, Liping
    Yang, Bingru
    [J]. PROCEEDINGS OF THE 2ND INTERNATIONAL CONFERENCE ON ADVANCES IN COMPUTER SCIENCE AND ENGINEERING (CSE 2013), 2013, 42 : 37 - 40
  • [32] Efficient convex hull algorithm for very large planar point set
    Fan, Guangquan
    Zhang, Guiyun
    Yang, Bingru
    [J]. Jisuanji Gongcheng/Computer Engineering, 2006, 32 (21): : 64 - 66
  • [33] Large sample approximation of the distribution for convex-hull estimators of boundaries
    Jeong, SO
    Park, BU
    [J]. SCANDINAVIAN JOURNAL OF STATISTICS, 2006, 33 (01) : 139 - 151
  • [34] Uncertainty quantification in large language models through convex hull analysis
    Catak, Ferhat Ozgur
    Kuzlu, Murat
    [J]. Discover Artificial Intelligence, 2024, 4 (01):
  • [35] Extended convex hull
    Fukuda, K
    Liebling, TM
    Lütolf, C
    [J]. COMPUTATIONAL GEOMETRY-THEORY AND APPLICATIONS, 2001, 20 (1-2): : 13 - 23
  • [36] CONVEX_HULL - A Pascal program for determining the convex hull for planar sets
    Yamamoto, Jorge Kazuo
    [J]. Computers and Geosciences, 1997, 23 (07): : 725 - 738
  • [37] CONVEX_HULL - A Pascal program for determining the convex hull for planar sets
    Yamamoto, JK
    [J]. COMPUTERS & GEOSCIENCES, 1997, 23 (07) : 725 - 738
  • [38] A Convex Primal Formulation for Convex Hull Pricing
    Hua, Bowen
    Baldick, Ross
    [J]. IEEE TRANSACTIONS ON POWER SYSTEMS, 2017, 32 (05) : 3814 - 3823
  • [39] Convolution and subordination in the convex hull of convex mappings
    Sokól, J
    [J]. APPLIED MATHEMATICS LETTERS, 2006, 19 (04) : 303 - 306
  • [40] On the volume of the convex hull of two convex bodies
    Ákos G. Horváth
    Zsolt Lángi
    [J]. Monatshefte für Mathematik, 2014, 174 : 219 - 229